These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 34892048

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N, Gou S, Yang S, Cao M, Sheng K.
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47. Comparison of volume, four- and eight-channel head coils using standard and parallel imaging.
    Gizewski ER, Maderwald S, Wanke I, Goehde S, Forsting M, Ladd ME.
    Eur Radiol; 2005 Aug; 15(8):1555-62. PubMed ID: 15856247
    [Abstract] [Full Text] [Related]

  • 48. High-field mr diffusion-weighted image denoising using a joint denoising convolutional neural network.
    Wang H, Zheng R, Dai F, Wang Q, Wang C.
    J Magn Reson Imaging; 2019 Dec; 50(6):1937-1947. PubMed ID: 31012226
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Image synthesis with deep convolutional generative adversarial networks for material decomposition in dual-energy CT from a kilovoltage CT.
    Kawahara D, Saito A, Ozawa S, Nagata Y.
    Comput Biol Med; 2021 Jan; 128():104111. PubMed ID: 33279790
    [Abstract] [Full Text] [Related]

  • 53. Temporally downsampled cerebral CT perfusion image restoration using deep residual learning.
    Zhu H, Tong D, Zhang L, Wang S, Wu W, Tang H, Chen Y, Luo L, Zhu J, Li B.
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):193-201. PubMed ID: 31673961
    [Abstract] [Full Text] [Related]

  • 54. Generalizing the Enhanced-Deep-Super-Resolution Neural Network to Brain MR Images: A Retrospective Study on the Cam-CAN Dataset.
    Fiscone C, Curti N, Ceccarelli M, Remondini D, Testa C, Lodi R, Tonon C, Manners DN, Castellani G.
    eNeuro; 2024 May; 11(5):. PubMed ID: 38729763
    [Abstract] [Full Text] [Related]

  • 55. Learning to Generate Missing Pulse Sequence in MRI using Deep Convolution Neural Network Trained with Visual Turing Test.
    Kumar V, Sharma MK, Jehadeesan R, Venkatraman B, Suman G, Patra A, Goenka AH, Sheet D.
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3419-3422. PubMed ID: 34891974
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. 3D MRI Reconstruction Based on 2D Generative Adversarial Network Super-Resolution.
    Zhang H, Shinomiya Y, Yoshida S.
    Sensors (Basel); 2021 Apr 23; 21(9):. PubMed ID: 33922811
    [Abstract] [Full Text] [Related]

  • 58. Quantitative assessment of phased array coils with different numbers of receiving channels in terms of signal-to-noise ratio and spatial noise variation in magnetic resonance imaging.
    Kim KN, Hernandez D, Seo JH, Noh Y, Han Y, Ryu YC, Chung JY.
    PLoS One; 2019 Apr 23; 14(7):e0219407. PubMed ID: 31276549
    [Abstract] [Full Text] [Related]

  • 59. Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (PET) and synthetic data augmentation.
    Sajjad M, Ramzan F, Khan MUG, Rehman A, Kolivand M, Fati SM, Bahaj SA.
    Microsc Res Tech; 2021 Dec 23; 84(12):3023-3034. PubMed ID: 34245203
    [Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.