These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 34892169

  • 41. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.
    Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG, Bruns OT.
    Proc Natl Acad Sci U S A; 2018 Apr 24; 115(17):4465-4470. PubMed ID: 29626132
    [Abstract] [Full Text] [Related]

  • 42. Investigating optical path and differential pathlength factor in reflectance photoplethysmography for the assessment of perfusion.
    Chatterjee S, Abay TY, Phillips JP, Kyriacou PA.
    J Biomed Opt; 2018 Jul 24; 23(7):1-11. PubMed ID: 29998648
    [Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44. Dual Layered Models of Light Scattering in the Near Infrared A: Optical Measurements and Simulation.
    Almajidy RK, Rackebrandt K, Gehring H, Hofmann UG.
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul 24; 2019():4770-4774. PubMed ID: 31946928
    [Abstract] [Full Text] [Related]

  • 45. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors.
    Wu Z, Zhai Y, Kim H, Azoulay JD, Ng TN.
    Acc Chem Res; 2018 Dec 18; 51(12):3144-3153. PubMed ID: 30520307
    [Abstract] [Full Text] [Related]

  • 46. Single Nanocrystal Spectroscopy of Shortwave Infrared Emitters.
    Bertram SN, Spokoyny B, Franke D, Caram JR, Yoo JJ, Murphy RP, Grein ME, Bawendi MG.
    ACS Nano; 2019 Feb 26; 13(2):1042-1049. PubMed ID: 30500155
    [Abstract] [Full Text] [Related]

  • 47. Exploring flavylium-based SWIR emitters: Design, synthesis and optical characterization of dyes derivatized with polar moieties.
    Blua F, Boccalon M, Rolando B, Napolitano R, Arena F, Blasi F, Bertinaria M.
    Bioorg Chem; 2024 Jul 26; 148():107462. PubMed ID: 38776650
    [Abstract] [Full Text] [Related]

  • 48. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique.
    Simpson CR, Kohl M, Essenpreis M, Cope M.
    Phys Med Biol; 1998 Sep 26; 43(9):2465-78. PubMed ID: 9755939
    [Abstract] [Full Text] [Related]

  • 49. Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy.
    Duncan A, Meek JH, Clemence M, Elwell CE, Tyszczuk L, Cope M, Delpy DT.
    Phys Med Biol; 1995 Feb 26; 40(2):295-304. PubMed ID: 7708855
    [Abstract] [Full Text] [Related]

  • 50. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK.
    Phys Med Biol; 2002 Jul 07; 47(13):2281-99. PubMed ID: 12164587
    [Abstract] [Full Text] [Related]

  • 51. Determination of optical probe interrogation field of near-infrared reflectance: phantom and Monte Carlo study.
    Bahadur AN, Giller CA, Kashyap D, Liu H.
    Appl Opt; 2007 Aug 10; 46(23):5552-61. PubMed ID: 17694099
    [Abstract] [Full Text] [Related]

  • 52. Characterizing short-wave infrared fluorescence of conventional near-infrared fluorophores.
    Byrd BK, Folaron MR, Leonor JP, Strawbridge RR, Cao X, Bruza P, Davis SC.
    J Biomed Opt; 2019 Mar 10; 24(3):1-5. PubMed ID: 30851014
    [Abstract] [Full Text] [Related]

  • 53. Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements.
    Arifler D, MacAulay C, Follen M, Richards-Kortum R.
    J Biomed Opt; 2006 Mar 10; 11(6):064027. PubMed ID: 17212550
    [Abstract] [Full Text] [Related]

  • 54. Monte Carlo modeling of photon migration in realistic human thoracic tissues for noninvasive monitoring of cardiac hemodynamics.
    Liu W, Chen W, Fang X, Li Y, Li T.
    J Biophotonics; 2019 Dec 10; 12(12):e201900148. PubMed ID: 31251454
    [Abstract] [Full Text] [Related]

  • 55. Using the shortwave infrared to image middle ear pathologies.
    Carr JA, Valdez TA, Bruns OT, Bawendi MG.
    Proc Natl Acad Sci U S A; 2016 Sep 06; 113(36):9989-94. PubMed ID: 27551085
    [Abstract] [Full Text] [Related]

  • 56. Simulation-based optimization of a near-infrared spectroscopic subcutaneous fat thickness measuring device.
    Morhard R, Jeffery H, McEwan A.
    Annu Int Conf IEEE Eng Med Biol Soc; 2014 Sep 06; 2014():510-3. PubMed ID: 25570008
    [Abstract] [Full Text] [Related]

  • 57. In vivo near-infrared fluorescent optical imaging for CNS drug discovery.
    Moreno MJ, Ling B, Stanimirovic DB.
    Expert Opin Drug Discov; 2020 Aug 06; 15(8):903-915. PubMed ID: 32396023
    [Abstract] [Full Text] [Related]

  • 58. An edge-readout, multilayer detector for positron emission tomography.
    Li X, Ruiz-Gonzalez M, Furenlid LR.
    Med Phys; 2018 Jun 06; 45(6):2425-2438. PubMed ID: 29635734
    [Abstract] [Full Text] [Related]

  • 59. Estimating the Dependence of Differential Pathlength Factor on Blood Volume and Oxygen Saturation using Monte Carlo method.
    Chatterjee S, Kyriacou PA.
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul 06; 2019():75-78. PubMed ID: 31945848
    [Abstract] [Full Text] [Related]

  • 60. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging.
    Nillius P, Klamra W, Sibczynski P, Sharma D, Danielsson M, Badano A.
    Med Phys; 2015 Feb 06; 42(2):600-605. PubMed ID: 28102604
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.