These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
329 related items for PubMed ID: 34904380
1. Identification and validation of a novel pathogenic variant in GDF2 (BMP9) responsible for hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations. Balachandar S, Graves TJ, Shimonty A, Kerr K, Kilner J, Xiao S, Slade R, Sroya M, Alikian M, Curetean E, Thomas E, McConnell VPM, McKee S, Boardman-Pretty F, Devereau A, Fowler TA, Caulfield MJ, Alton EW, Ferguson T, Redhead J, McKnight AJ, Thomas GA, Genomics England Research ConsortiumGenomics England, London, UK., Aldred MA, Shovlin CL. Am J Med Genet A; 2022 Mar; 188(3):959-964. PubMed ID: 34904380 [Abstract] [Full Text] [Related]
2. Clinical and molecular characterization of patients with hereditary hemorrhagic telangiectasia: Experience from an HHT Center of Excellence. Latif MA, Sobreira NLD, Guthrie KS, Motaghi M, Robinson GM, Shafaat O, Gong AJ, Weiss CR. Am J Med Genet A; 2021 Jul; 185(7):1981-1990. PubMed ID: 33768677 [Abstract] [Full Text] [Related]
3. Hereditary hemorrhagic telangiectasia associated with cortical development malformation due to a start loss mutation in ENG. Villa D, Cinnante C, Valcamonica G, Manenti G, Lanfranconi S, Colombi A, Ghione I, Saetti MC, D'Amico M, Bonato S, Bresolin N, Comi GP, Ronchi D. BMC Neurol; 2020 Aug 26; 20(1):316. PubMed ID: 32847536 [Abstract] [Full Text] [Related]
4. Mutation affecting the proximal promoter of Endoglin as the origin of hereditary hemorrhagic telangiectasia type 1. Albiñana V, Zafra MP, Colau J, Zarrabeitia R, Recio-Poveda L, Olavarrieta L, Pérez-Pérez J, Botella LM. BMC Med Genet; 2017 Feb 23; 18(1):20. PubMed ID: 28231770 [Abstract] [Full Text] [Related]
5. Overexpression of Activin Receptor-Like Kinase 1 in Endothelial Cells Suppresses Development of Arteriovenous Malformations in Mouse Models of Hereditary Hemorrhagic Telangiectasia. Hwan Kim Y, Vu PN, Choe SW, Jeon CJ, Arthur HM, Vary CPH, Lee YJ, Oh SP. Circ Res; 2020 Oct 09; 127(9):1122-1137. PubMed ID: 32762495 [Abstract] [Full Text] [Related]
6. Mutational and clinical spectrum of Japanese patients with hereditary hemorrhagic telangiectasia. Kitayama K, Ishiguro T, Komiyama M, Morisaki T, Morisaki H, Minase G, Hamanaka K, Miyatake S, Matsumoto N, Kato M, Takahashi T, Yorifuji T. BMC Med Genomics; 2021 Dec 06; 14(1):288. PubMed ID: 34872578 [Abstract] [Full Text] [Related]
7. Mutations in the ENG, ACVRL1, and SMAD4 genes and clinical manifestations of hereditary haemorrhagic telangiectasia: experience from the Center for Osler's Disease, Uppsala University Hospital. Karlsson T, Cherif H. Ups J Med Sci; 2018 Sep 06; 123(3):153-157. PubMed ID: 30251589 [Abstract] [Full Text] [Related]
8. Pulmonary arteriovenous malformations may be the only clinical criterion present in genetically confirmed hereditary haemorrhagic telangiectasia. Anderson E, Sharma L, Alsafi A, Shovlin CL. Thorax; 2022 Jun 06; 77(6):628-630. PubMed ID: 35165143 [Abstract] [Full Text] [Related]
9. Clinical manifestations of patients with GDF2 mutations associated with hereditary hemorrhagic telangiectasia type 5. Farhan A, Yuan F, Partan E, Weiss CR. Am J Med Genet A; 2022 Jan 06; 188(1):199-209. PubMed ID: 34611981 [Abstract] [Full Text] [Related]
10. Clinical features and mutations in the ENG, ACVRL1, and SMAD4 genes in Korean patients with hereditary hemorrhagic telangiectasia. Lee ST, Kim JA, Jang SY, Kim DK, Do YS, Suh GY, Kim JW, Ki CS. J Korean Med Sci; 2009 Feb 06; 24(1):69-76. PubMed ID: 19270816 [Abstract] [Full Text] [Related]
11. Mutation analysis in hereditary haemorrhagic telangiectasia in Germany reveals 11 novel ENG and 12 novel ACVRL1/ALK1 mutations. Wehner LE, Folz BJ, Argyriou L, Twelkemeyer S, Teske U, Geisthoff UW, Werner JA, Engel W, Nayernia K. Clin Genet; 2006 Mar 06; 69(3):239-45. PubMed ID: 16542389 [Abstract] [Full Text] [Related]
12. Characterization of pulmonary arteriovenous malformations in ACVRL1 versus ENG mutation carriers in hereditary hemorrhagic telangiectasia. Mu W, Cordner ZA, Yuqi Wang K, Reed K, Robinson G, Mitchell S, Lin D. Genet Med; 2018 Jun 06; 20(6):639-644. PubMed ID: 29048420 [Abstract] [Full Text] [Related]
13. Screening for children from families with Rendu-Osler-Weber disease: from geneticist to clinician. Giordano P, Nigro A, Lenato GM, Guanti G, Suppressa P, Lastella P, DE Mattia D, Sabbà C. J Thromb Haemost; 2006 Jun 06; 4(6):1237-45. PubMed ID: 16706966 [Abstract] [Full Text] [Related]
14. Sequence variations of ACVRL1 play a critical role in hepatic vascular malformations in hereditary hemorrhagic telangiectasia. Giraud S, Bardel C, Dupuis-Girod S, Carette MF, Gilbert-Dussardier B, Riviere S, Saurin JC, Eyries M, Patri S, Decullier E, Calender A, Lesca G. Orphanet J Rare Dis; 2020 Sep 22; 15(1):254. PubMed ID: 32962750 [Abstract] [Full Text] [Related]
18. Homozygous GDF2 nonsense mutations result in a loss of circulating BMP9 and BMP10 and are associated with either PAH or an "HHT-like" syndrome in children. Hodgson J, Ruiz-Llorente L, McDonald J, Quarrell O, Ugonna K, Bentham J, Mason R, Martin J, Moore D, Bergstrom K, Bayrak-Toydemir P, Wooderchak-Donahue W, Morrell NW, Condliffe R, Bernabeu C, Upton PD. Mol Genet Genomic Med; 2021 Dec 22; 9(12):e1685. PubMed ID: 33834622 [Abstract] [Full Text] [Related]
19. Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, McDonald J, Stevenson DA. ; 1993 Dec 22. PubMed ID: 20301525 [Abstract] [Full Text] [Related]