These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 34905020
1. Cyanogenesis in cassava and its molecular manipulation for crop improvement. McMahon J, Sayre R, Zidenga T. J Exp Bot; 2022 Apr 05; 73(7):1853-1867. PubMed ID: 34905020 [Abstract] [Full Text] [Related]
2. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Siritunga D, Sayre R. Plant Mol Biol; 2004 Nov 05; 56(4):661-9. PubMed ID: 15630626 [Abstract] [Full Text] [Related]
3. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels. Narayanan NN, Ihemere U, Ellery C, Sayre RT. PLoS One; 2011 Nov 05; 6(7):e21996. PubMed ID: 21799761 [Abstract] [Full Text] [Related]
5. Transgenic approaches for cyanogen reduction in cassava. Siritunga D, Sayre R. J AOAC Int; 2007 Jul 05; 90(5):1450-5. PubMed ID: 17955993 [Abstract] [Full Text] [Related]
6. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use. Imakumbili MLE, Semu E, Semoka JMR, Abass A, Mkamilo G. PLoS One; 2020 Jul 05; 15(2):e0228641. PubMed ID: 32053630 [Abstract] [Full Text] [Related]
7. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development. Zidenga T, Siritunga D, Sayre RT. Front Plant Sci; 2017 Jul 05; 8():220. PubMed ID: 28286506 [Abstract] [Full Text] [Related]
8. Extending cassava root shelf life via reduction of reactive oxygen species production. Zidenga T, Leyva-Guerrero E, Moon H, Siritunga D, Sayre R. Plant Physiol; 2012 Aug 05; 159(4):1396-407. PubMed ID: 22711743 [Abstract] [Full Text] [Related]
9. Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification. Siritunga D, Arias-Garzon D, White W, Sayre RT. Plant Biotechnol J; 2004 Jan 05; 2(1):37-43. PubMed ID: 17166141 [Abstract] [Full Text] [Related]
10. Soil nutrient adequacy for optimal cassava growth, implications on cyanogenic glucoside production: A case of konzo-affected Mtwara region, Tanzania. Imakumbili MLE, Semu E, Semoka JMR, Abass A, Mkamilo G. PLoS One; 2019 Jan 05; 14(5):e0216708. PubMed ID: 31083702 [Abstract] [Full Text] [Related]
11. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba. Hernández T, Lundquist P, Oliveira L, Pérez Cristiá R, Rodriguez E, Rosling H. Nat Toxins; 1995 Jan 05; 3(2):114-7. PubMed ID: 7613736 [Abstract] [Full Text] [Related]
12. Cyanogenic potential in cassava and its influence on a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae). Riis L, Bellotti AC, Bonierbale M, O'Brien GM. J Econ Entomol; 2003 Dec 05; 96(6):1905-14. PubMed ID: 14977132 [Abstract] [Full Text] [Related]
13. Content and distribution of cyanogenic compounds in cassava roots and leaves in association with physiological age. Ospina MA, Tran T, Pizarro M, Luna J, Salazar S, Londoño L, Ceballos H, Becerra Lopez-Lavalle LA, Dufour D. J Sci Food Agric; 2024 Jun 05; 104(8):4851-4859. PubMed ID: 37961830 [Abstract] [Full Text] [Related]
14. Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava. Juma BS, Mukami A, Mweu C, Ngugi MP, Mbinda W. Front Plant Sci; 2022 Jun 05; 13():1009860. PubMed ID: 36388608 [Abstract] [Full Text] [Related]
15. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root. Ogbonna AC, Braatz de Andrade LR, Rabbi IY, Mueller LA, Jorge de Oliveira E, Bauchet GJ. Plant J; 2021 Feb 05; 105(3):754-770. PubMed ID: 33164279 [Abstract] [Full Text] [Related]
16. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Balyejusa Kizito E, Rönnberg-Wästljung AC, Egwang T, Gullberg U, Fregene M, Westerbergh A. Hereditas; 2007 Sep 05; 144(4):129-36. PubMed ID: 17850597 [Abstract] [Full Text] [Related]
17. Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety. Nambisan B. Food Chem Toxicol; 2011 Mar 05; 49(3):690-3. PubMed ID: 21074593 [Abstract] [Full Text] [Related]
18. Isolation and partial characterization of a root-specific promoter for stacking multiple traits into cassava (Manihot esculenta CRANTZ). Gbadegesin MA, Beeching JR. Genet Mol Res; 2011 Jun 07; 10(2):1032-41. PubMed ID: 21710453 [Abstract] [Full Text] [Related]
19. Iron and protein biofortification of cassava: lessons learned. Leyva-Guerrero E, Narayanan NN, Ihemere U, Sayre RT. Curr Opin Biotechnol; 2012 Apr 07; 23(2):257-64. PubMed ID: 22226461 [Abstract] [Full Text] [Related]
20. Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci. Easson MLAE, Malka O, Paetz C, Hojná A, Reichelt M, Stein B, van Brunschot S, Feldmesser E, Campbell L, Colvin J, Winter S, Morin S, Gershenzon J, Vassão DG. Sci Rep; 2021 Jun 24; 11(1):13244. PubMed ID: 34168179 [Abstract] [Full Text] [Related] Page: [Next] [New Search]