These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
244 related items for PubMed ID: 34906713
1. Asymmetric directed functional connectivity within the frontoparietal motor network during motor imagery and execution. Ogawa T, Shimobayashi H, Hirayama JI, Kawanabe M. Neuroimage; 2022 Feb 15; 247():118794. PubMed ID: 34906713 [Abstract] [Full Text] [Related]
2. Modulation of functional network with real-time fMRI feedback training of right premotor cortex activity. Hui M, Zhang H, Ge R, Yao L, Long Z. Neuropsychologia; 2014 Sep 15; 62():111-23. PubMed ID: 25058055 [Abstract] [Full Text] [Related]
3. Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. Gao Q, Duan X, Chen H. Neuroimage; 2011 Jan 15; 54(2):1280-8. PubMed ID: 20828626 [Abstract] [Full Text] [Related]
4. Parallel alterations of functional connectivity during execution and imagination after motor imagery learning. Zhang H, Xu L, Zhang R, Hui M, Long Z, Zhao X, Yao L. PLoS One; 2012 Jan 15; 7(5):e36052. PubMed ID: 22629308 [Abstract] [Full Text] [Related]
5. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation. Bajaj S, Butler AJ, Drake D, Dhamala M. Neuroimage Clin; 2015 Jan 15; 8():572-82. PubMed ID: 26236627 [Abstract] [Full Text] [Related]
6. Neural coupling between contralesional motor and frontoparietal networks correlates with motor ability in individuals with chronic stroke. Lam TK, Dawson DR, Honjo K, Ross B, Binns MA, Stuss DT, Black SE, Chen JJ, Levine BT, Fujioka T, Chen JL. J Neurol Sci; 2018 Jan 15; 384():21-29. PubMed ID: 29249372 [Abstract] [Full Text] [Related]
7. Imagined and Executed Actions in the Human Motor System: Testing Neural Similarity Between Execution and Imagery of Actions with a Multivariate Approach. Zabicki A, de Haas B, Zentgraf K, Stark R, Munzert J, Krüger B. Cereb Cortex; 2017 Sep 01; 27(9):4523-4536. PubMed ID: 27600847 [Abstract] [Full Text] [Related]
8. Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas. Pilgramm S, de Haas B, Helm F, Zentgraf K, Stark R, Munzert J, Krüger B. Hum Brain Mapp; 2016 Jan 01; 37(1):81-93. PubMed ID: 26452176 [Abstract] [Full Text] [Related]
9. Changes in network connectivity during motor imagery and execution. Kim YK, Park E, Lee A, Im CH, Kim YH. PLoS One; 2018 Jan 01; 13(1):e0190715. PubMed ID: 29324886 [Abstract] [Full Text] [Related]
10. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke. Hannanu FF, Zeffiro TA, Lamalle L, Heck O, Renard F, Thuriot A, Krainik A, Hommel M, Detante O, Jaillard A, ISIS-HERMES Study Group. Neuroimage Clin; 2017 Jan 01; 14():518-529. PubMed ID: 28317947 [Abstract] [Full Text] [Related]
11. Structural and functional features characterizing the brains of individuals with higher controllability of motor imagery. Furuta T, Morita T, Miura G, Naito E. Sci Rep; 2024 Jul 26; 14(1):17243. PubMed ID: 39060339 [Abstract] [Full Text] [Related]
12. Deciphering Functional Connectivity Differences Between Motor Imagery and Execution of Target-Oriented Grasping. Kim E, Lee WH, Seo HG, Nam HS, Kim YJ, Kang MG, Bang MS, Kim S, Oh BM. Brain Topogr; 2023 May 26; 36(3):433-446. PubMed ID: 37060497 [Abstract] [Full Text] [Related]
13. Dynamic premotor-to-parietal interactions during spatial imagery. Sack AT, Jacobs C, De Martino F, Staeren N, Goebel R, Formisano E. J Neurosci; 2008 Aug 20; 28(34):8417-29. PubMed ID: 18716200 [Abstract] [Full Text] [Related]
14. Differential contribution of bilateral supplementary motor area to the effective connectivity networks induced by task conditions using dynamic causal modeling. Gao Q, Tao Z, Zhang M, Chen H. Brain Connect; 2014 May 20; 4(4):256-64. PubMed ID: 24606178 [Abstract] [Full Text] [Related]
15. Subjective vividness of motor imagery has a neural signature in human premotor and parietal cortex. Zabicki A, de Haas B, Zentgraf K, Stark R, Munzert J, Krüger B. Neuroimage; 2019 Aug 15; 197():273-283. PubMed ID: 31051294 [Abstract] [Full Text] [Related]
16. Auditory and visual connectivity gradients in frontoparietal cortex. Braga RM, Hellyer PJ, Wise RJ, Leech R. Hum Brain Mapp; 2017 Jan 15; 38(1):255-270. PubMed ID: 27571304 [Abstract] [Full Text] [Related]
17. Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory. Xu L, Zhang H, Hui M, Long Z, Jin Z, Liu Y, Yao L. Neuroscience; 2014 Mar 07; 261():184-94. PubMed ID: 24333970 [Abstract] [Full Text] [Related]
18. Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery. Sauvage C, Jissendi P, Seignan S, Manto M, Habas C. J Neuroradiol; 2013 Oct 07; 40(4):267-80. PubMed ID: 23433722 [Abstract] [Full Text] [Related]
19. Functional properties of brain areas associated with motor execution and imagery. Hanakawa T, Immisch I, Toma K, Dimyan MA, Van Gelderen P, Hallett M. J Neurophysiol; 2003 Feb 07; 89(2):989-1002. PubMed ID: 12574475 [Abstract] [Full Text] [Related]
20. Action affordances and visuo-spatial complexity in motor imagery: An fMRI study. Schulz L, Ischebeck A, Wriessnegger SC, Steyrl D, Müller-Putz GR. Brain Cogn; 2018 Jul 07; 124():37-46. PubMed ID: 29723681 [Abstract] [Full Text] [Related] Page: [Next] [New Search]