These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


126 related items for PubMed ID: 34906815

  • 1. Ultrasensitive label-free electrochemical biosensor for detecting linear microcystin-LR using degrading enzyme MlrB as recognition element.
    Li Y, Si S, Huang F, Wei J, Dong S, Yang F, Li H, Liu S.
    Bioelectrochemistry; 2022 Apr; 144():108000. PubMed ID: 34906815
    [Abstract] [Full Text] [Related]

  • 2. Sensitive Identification of Microcystin-LR via a Reagent-Free and Reusable Electrochemical Biosensor Using a Methylene Blue-Labeled Aptamer.
    Wei X, Wang S, Zhan Y, Kai T, Ding P.
    Biosensors (Basel); 2022 Jul 22; 12(8):. PubMed ID: 35892453
    [Abstract] [Full Text] [Related]

  • 3. Development of a Multiplexed Electrochemical Aptasensor for the Detection of Cyanotoxins.
    Rhouati A, Zourob M.
    Biosensors (Basel); 2024 May 24; 14(6):. PubMed ID: 38920572
    [Abstract] [Full Text] [Related]

  • 4. Determination of microcystin-LR in water by a label-free aptamer based electrochemical impedance biosensor.
    Lin Z, Huang H, Xu Y, Gao X, Qiu B, Chen X, Chen G.
    Talanta; 2013 Jan 15; 103():371-4. PubMed ID: 23200401
    [Abstract] [Full Text] [Related]

  • 5. Enzyme-Free Molecularly Imprinted and Graphene-Functionalized Photoelectrochemical Sensor Platform for Pollutants.
    Song M, Sun H, Yu J, Wang Y, Li M, Liu M, Zhao G.
    ACS Appl Mater Interfaces; 2021 Aug 11; 13(31):37212-37222. PubMed ID: 34327984
    [Abstract] [Full Text] [Related]

  • 6. Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR.
    Zhang J, Lei J, Xu C, Ding L, Ju H.
    Anal Chem; 2010 Feb 01; 82(3):1117-22. PubMed ID: 20055449
    [Abstract] [Full Text] [Related]

  • 7. Fabricating photoelectrochemical aptasensor for selectively monitoring microcystin-LR residues in fish based on visible light-responsive BiOBr nanoflakes/N-doped graphene photoelectrode.
    Du X, Jiang D, Dai L, Zhou L, Hao N, Qian J, Qiu B, Wang K.
    Biosens Bioelectron; 2016 Jul 15; 81():242-248. PubMed ID: 26963789
    [Abstract] [Full Text] [Related]

  • 8. Electrochemical biosensor for methyl parathion based on single-walled carbon nanotube/glutaraldehyde crosslinked acetylcholinesterase-wrapped bovine serum albumin nanocomposites.
    Kumar THV, Sundramoorthy AK.
    Anal Chim Acta; 2019 Oct 03; 1074():131-141. PubMed ID: 31159933
    [Abstract] [Full Text] [Related]

  • 9. Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene-gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition.
    Ruiyi L, Qianfang X, Zaijun L, Xiulan S, Junkang L.
    Biosens Bioelectron; 2013 Jun 15; 44():235-40. PubMed ID: 23434759
    [Abstract] [Full Text] [Related]

  • 10. Sensitive detection of microcystin-LR by using a label-free electrochemical immunosensor based on Au nanoparticles/silicon template/methylene blue nanocomposite.
    Fu X, Feng Y, Niu S, Zhao C, Yang M, Yang Y.
    J Nanosci Nanotechnol; 2013 Dec 15; 13(12):8245-52. PubMed ID: 24266220
    [Abstract] [Full Text] [Related]

  • 11. Cost-effective screen-printed carbon electrode biosensors for rapid detection of microcystin-LR in surface waters for early warning of harmful algal blooms.
    Stoll S, Hwang JH, Fox DW, Kim K, Zhai L, Lee WH.
    Environ Sci Pollut Res Int; 2023 Dec 15; 30(60):124854-124865. PubMed ID: 36194320
    [Abstract] [Full Text] [Related]

  • 12. A novel fluorescent aptasensor for ultrasensitive detection of microcystin-LR based on single-walled carbon nanotubes and dapoxyl.
    Taghdisi SM, Danesh NM, Ramezani M, Ghows N, Mousavi Shaegh SA, Abnous K.
    Talanta; 2017 May 01; 166():187-192. PubMed ID: 28213221
    [Abstract] [Full Text] [Related]

  • 13. Detection of Microcystin-LR in the Cells and Natural Lake Water Samples by A Unique Fluorescence-Based Method.
    Liu Y, Li B, Zhang H, Liu Y, Xie P.
    J Fluoresc; 2022 Mar 01; 32(2):505-519. PubMed ID: 34981282
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Portable sensing system based on electrochemical impedance spectroscopy for the simultaneous quantification of free and total microcystin-LR in freshwaters.
    Barreiros Dos Santos M, Queirós RB, Geraldes Á, Marques C, Vilas-Boas V, Dieguez L, Paz E, Ferreira R, Morais J, Vasconcelos V, Piteira J, Freitas PP, Espiña B.
    Biosens Bioelectron; 2019 Oct 01; 142():111550. PubMed ID: 31387024
    [Abstract] [Full Text] [Related]

  • 18. Automated online optical biosensing system for continuous real-time determination of microcystin-LR with high sensitivity and specificity: early warning for cyanotoxin risk in drinking water sources.
    Shi HC, Song BD, Long F, Zhou XH, He M, Lv Q, Yang HY.
    Environ Sci Technol; 2013 May 07; 47(9):4434-41. PubMed ID: 23514076
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Electrochemical detection of microcystin-LR based on its deleterious effect on DNA.
    Zhang K, Ma H, Yan P, Tong W, Huang X, Chen DDY.
    Talanta; 2018 Aug 01; 185():405-410. PubMed ID: 29759219
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.