These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
277 related items for PubMed ID: 34907017
21. NADPH Thioredoxin Reductase C and Thioredoxins Act Concertedly in Seedling Development. Ojeda V, Pérez-Ruiz JM, González M, Nájera VA, Sahrawy M, Serrato AJ, Geigenberger P, Cejudo FJ. Plant Physiol; 2017 Jul; 174(3):1436-1448. PubMed ID: 28500266 [Abstract] [Full Text] [Related]
22. Biochemical Basis for Redox Regulation of Chloroplast-Localized Phosphofructokinase from Arabidopsis thaliana. Yoshida K, Hisabori T. Plant Cell Physiol; 2021 Jul 17; 62(3):401-410. PubMed ID: 33416847 [Abstract] [Full Text] [Related]
23. Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts. Yoshida K, Hara A, Sugiura K, Fukaya Y, Hisabori T. Proc Natl Acad Sci U S A; 2018 Aug 28; 115(35):E8296-E8304. PubMed ID: 30104347 [Abstract] [Full Text] [Related]
24. Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana. Naranjo B, Diaz-Espejo A, Lindahl M, Cejudo FJ. J Exp Bot; 2016 Mar 28; 67(6):1951-64. PubMed ID: 26842981 [Abstract] [Full Text] [Related]
25. NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Pérez-Ruiz JM, Naranjo B, Ojeda V, Guinea M, Cejudo FJ. Proc Natl Acad Sci U S A; 2017 Nov 07; 114(45):12069-12074. PubMed ID: 29078290 [Abstract] [Full Text] [Related]
26. Thioredoxins and thioredoxin reductase in chloroplasts: A review. Kang Z, Qin T, Zhao Z. Gene; 2019 Jul 20; 706():32-42. PubMed ID: 31028868 [Abstract] [Full Text] [Related]
27. The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ. Elife; 2018 Oct 12; 7():. PubMed ID: 30311601 [Abstract] [Full Text] [Related]
28. AtECB1/MRL7, a thioredoxin-like fold protein with disulfide reductase activity, regulates chloroplast gene expression and chloroplast biogenesis in Arabidopsis thaliana. Yua QB, Ma Q, Kong MM, Zhao TT, Zhang XL, Zhou Q, Huang C, Chong K, Yang ZN. Mol Plant; 2014 Jan 12; 7(1):206-17. PubMed ID: 23956074 [Abstract] [Full Text] [Related]
29. Maintaining the Chloroplast Redox Balance through the PGR5-Dependent Pathway and the Trx System Is Required for Light-Dependent Activation of Photosynthetic Reactions. Okegawa Y, Tsuda N, Sakamoto W, Motohashi K. Plant Cell Physiol; 2022 Jan 25; 63(1):92-103. PubMed ID: 34623443 [Abstract] [Full Text] [Related]
30. Current Insights into the Redox Regulation Network in Plant Chloroplasts. Yoshida K, Hisabori T. Plant Cell Physiol; 2023 Jul 17; 64(7):704-715. PubMed ID: 37225393 [Abstract] [Full Text] [Related]
31. Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function. Telman W, Liebthal M, Dietz KJ. Photosynth Res; 2020 Jul 17; 145(1):31-41. PubMed ID: 31768716 [Abstract] [Full Text] [Related]
32. The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis. Casatejada A, Puerto-Galán L, Pérez-Ruiz JM, Cejudo FJ. Redox Biol; 2023 Jul 17; 63():102731. PubMed ID: 37245286 [Abstract] [Full Text] [Related]
33. Divergent Protein Redox Dynamics and Their Relationship with Electron Transport Efficiency during Photosynthesis Induction. Yoshida K, Hisabori T. Plant Cell Physiol; 2024 May 30; 65(5):737-747. PubMed ID: 38305687 [Abstract] [Full Text] [Related]
34. Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. Nikkanen L, Toivola J, Rintamäki E. Plant Cell Environ; 2016 Aug 30; 39(8):1691-705. PubMed ID: 26831830 [Abstract] [Full Text] [Related]
35. Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T. Plant Cell Physiol; 2004 Jan 30; 45(1):18-27. PubMed ID: 14749482 [Abstract] [Full Text] [Related]
36. Dissipation of the proton electrochemical gradient in chloroplasts promotes the oxidation of ATP synthase by thioredoxin-like proteins. Sekiguchi T, Yoshida K, Wakabayashi KI, Hisabori T. J Biol Chem; 2022 Nov 30; 298(11):102541. PubMed ID: 36174673 [Abstract] [Full Text] [Related]
37. Single cystathionine β-synthase domain-containing proteins modulate development by regulating the thioredoxin system in Arabidopsis. Yoo KS, Ok SH, Jeong BC, Jung KW, Cui MH, Hyoung S, Lee MR, Song HK, Shin JS. Plant Cell; 2011 Oct 30; 23(10):3577-94. PubMed ID: 22021414 [Abstract] [Full Text] [Related]
38. Redox activity of thioredoxin z and fructokinase-like protein 1 is dispensable for autotrophic growth of Arabidopsis thaliana. Wimmelbacher M, Börnke F. J Exp Bot; 2014 Jun 30; 65(9):2405-13. PubMed ID: 24659486 [Abstract] [Full Text] [Related]
39. Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Pérez-Ruiz JM, Spínola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ. Plant Cell; 2006 Sep 30; 18(9):2356-68. PubMed ID: 16891402 [Abstract] [Full Text] [Related]
40. Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. Carrillo LR, Froehlich JE, Cruz JA, Savage LJ, Kramer DM. Plant J; 2016 Sep 30; 87(6):654-63. PubMed ID: 27233821 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]