These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 34907539
1. A reduction in metabolism explains the tradeoffs associated with the long-term adaptation of phytoplankton to high CO2 concentrations. Jin P, Ji Y, Huang Q, Li P, Pan J, Lu H, Liang Z, Guo Y, Zhong J, Beardall J, Xia J. New Phytol; 2022 Mar; 233(5):2155-2167. PubMed ID: 34907539 [Abstract] [Full Text] [Related]
2. The adaptive mechanisms of the marine diatom Thalassiosira weissflogii to long-term high CO2 and warming. Zhou Y, Wu F, Wu J, Overmans S, Ye M, Xiao M, Peng B, Xu L, Huang J, Lu Y, Wang Y, Liang S, Zhang H, Liang X, Zhong Z, Liu H, Ruan Z, Xia J, Jin P. Plant J; 2024 Aug; 119(4):2001-2020. PubMed ID: 38943614 [Abstract] [Full Text] [Related]
3. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations. Li F, Beardall J, Collins S, Gao K. Glob Chang Biol; 2017 Jan; 23(1):127-137. PubMed ID: 27629864 [Abstract] [Full Text] [Related]
4. Long-term adaptation to elevated temperature but not CO2 alleviates the negative effects of ultraviolet-B radiation in a marine diatom. Jin P, Wan J, Dai X, Zhou Y, Huang J, Lin J, Lu Y, Liang S, Xiao M, Zhao J, Xu L, Li M, Peng B, Xia J. Mar Environ Res; 2023 Apr; 186():105929. PubMed ID: 36863076 [Abstract] [Full Text] [Related]
5. The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii. Goldman JA, Bender ML, Morel FM. Photosynth Res; 2017 Apr; 132(1):83-93. PubMed ID: 28062941 [Abstract] [Full Text] [Related]
6. Influence of ocean acidification on thermal reaction norms of carbon metabolism in the marine diatom Phaeodactylum tricornutum. Tong S, Xu D, Wang Y, Zhang X, Li Y, Wu H, Ye N. Mar Environ Res; 2021 Feb; 164():105233. PubMed ID: 33310685 [Abstract] [Full Text] [Related]
7. Increased genetic diversity loss and genetic differentiation in a model marine diatom adapted to ocean warming compared to high CO2. Jin P, Wan J, Zhou Y, Gao K, Beardall J, Lin J, Huang J, Lu Y, Liang S, Wang K, Ma Z, Xia J. ISME J; 2022 Nov; 16(11):2587-2598. PubMed ID: 35948613 [Abstract] [Full Text] [Related]
8. Unicellular C4 photosynthesis in a marine diatom. Reinfelder JR, Kraepiel AM, Morel FM. Nature; 2000 Oct 26; 407(6807):996-9. PubMed ID: 11069177 [Abstract] [Full Text] [Related]
9. Responses of carbonic anhydrases and Rubisco to abrupt CO2 changes of seawater in two marine diatoms. Zeng X, Jin P, Zou D, Liu Y, Xia J. Environ Sci Pollut Res Int; 2019 Jun 26; 26(16):16388-16395. PubMed ID: 30982194 [Abstract] [Full Text] [Related]
10. Proteomic and biochemical responses to different concentrations of CO2 suggest the existence of multiple carbon metabolism strategies in Phaeodactylum tricornutum. Wu S, Gu W, Jia S, Wang L, Wang L, Liu X, Zhou L, Huang A, Wang G. Biotechnol Biofuels; 2021 Dec 14; 14(1):235. PubMed ID: 34906223 [Abstract] [Full Text] [Related]
12. Provision of carbon skeleton for lipid synthesis from the breakdown of intracellular protein and soluble sugar in Phaeodactylum tricornutum under high CO2. Huang A, Wu S, Gu W, Li Y, Xie X, Wang G. BMC Biotechnol; 2019 Jul 26; 19(1):53. PubMed ID: 31349823 [Abstract] [Full Text] [Related]
13. Self-Assembled Nanoscale Manganese Oxides Enhance Carbon Capture by Diatoms. Hou X, Hu X. Environ Sci Technol; 2022 Dec 06; 56(23):17215-17226. PubMed ID: 36375171 [Abstract] [Full Text] [Related]
14. Adaptation of a marine diatom to ocean acidification increases its sensitivity to toxic metal exposure. Dai X, Zhang J, Zeng X, Huang J, Lin J, Lu Y, Liang S, Ye M, Xiao M, Zhao J, Overmans S, Xia J, Jin P. Mar Pollut Bull; 2022 Oct 06; 183():114056. PubMed ID: 36058179 [Abstract] [Full Text] [Related]
15. Physiological Responses of a Model Marine Diatom to Fast pH Changes: Special Implications of Coastal Water Acidification. Wu Y, Beardall J, Gao K. PLoS One; 2015 Oct 06; 10(10):e0141163. PubMed ID: 26496125 [Abstract] [Full Text] [Related]
16. Response of CO2-starved diatom Phaeodactylum tricornutum to light intensity transition. Heydarizadeh P, Boureba W, Zahedi M, Huang B, Moreau B, Lukomska E, Couzinet-Mossion A, Wielgosz-Collin G, Martin-Jézéquel V, Bougaran G, Marchand J, Schoefs B. Philos Trans R Soc Lond B Biol Sci; 2017 Sep 05; 372(1728):. PubMed ID: 28717022 [Abstract] [Full Text] [Related]
17. Enhancement of diatom growth and phytoplankton productivity with reduced O2 availability is moderated by rising CO2. Sun JZ, Wang T, Huang R, Yi X, Zhang D, Beardall J, Hutchins DA, Liu X, Wang X, Deng Z, Li G, Gao G, Gao K. Commun Biol; 2022 Jan 14; 5(1):54. PubMed ID: 35031680 [Abstract] [Full Text] [Related]
18. Extra O2 evolution reveals an O2-independent alternative electron sink in photosynthesis of marine diatoms. Shimakawa G, Matsuda Y. Photosynth Res; 2024 Jan 14; 159(1):61-68. PubMed ID: 38316719 [Abstract] [Full Text] [Related]
19. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms. Young JN, Hopkinson BM. J Exp Bot; 2017 Jun 01; 68(14):3751-3762. PubMed ID: 28645158 [Abstract] [Full Text] [Related]
20. Effect of iron on the growth of Phaeodactylum tricornutum via photosynthesis. Zhao P, Gu W, Huang A, Wu S, Liu C, Huan L, Gao S, Xie X, Wang G. J Phycol; 2018 Feb 01; 54(1):34-43. PubMed ID: 29159944 [Abstract] [Full Text] [Related] Page: [Next] [New Search]