These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Preparation and performance study of a PVDF-LATP ceramic composite polymer electrolyte membrane for solid-state batteries. Liang X, Han D, Wang Y, Lan L, Mao J. RSC Adv; 2018 Dec 04; 8(71):40498-40504. PubMed ID: 35557886 [Abstract] [Full Text] [Related]
6. Across Interfacial Li+ Conduction Accelerated by a Single-Ion Conducting Polymer in Ceramic-Rich Composite Electrolytes for Solid-State Batteries. Meng N, Lian F, Wu L, Wang Y, Qiu J. ACS Appl Mater Interfaces; 2024 Aug 07; 16(31):41487-41494. PubMed ID: 39001811 [Abstract] [Full Text] [Related]
7. In Situ Gelation of a 1,3-Dioxolane Dual-Permeable Porous Tandem Framework with Excellent Interfacial Stability to Power Long-Cycling Solid-State Lithium Metal Batteries. Song Z, Li H, Zheng F, Lin H, Liu J, Liu W, Sun G, Tao X. ACS Appl Mater Interfaces; 2023 Jul 26; 15(29):35280-35289. PubMed ID: 37434413 [Abstract] [Full Text] [Related]
14. Improving Room-Temperature Li-Metal Battery Performance by In Situ Creation of Fast Li+ Transport Pathways in a Polymer-Ceramic Electrolyte. Yu J, Zhou G, Li Y, Wang Y, Chen D, Ciucci F. Small; 2023 Sep 26; 19(39):e2302691. PubMed ID: 37279776 [Abstract] [Full Text] [Related]
15. Highly efficient ion-transport "polymer-in-ceramic" electrolytes boost stable all-solid-state Li metal batteries. Chang S, Wang Q, Wang A, Yi M, Zhu B, Zhang M, Xiao Y, Hu Y, Wang X, Lai Y, Wang M, Zhang Z. J Colloid Interface Sci; 2024 Oct 26; 671():477-485. PubMed ID: 38815383 [Abstract] [Full Text] [Related]
16. In situ electrochemical modification of the Li/Li1.3Al0.3Ti1.7(PO4)3 interface in solid lithium metal batteries via an electrolyte additive. Xu Y, Tian M, Rong Y, Lu C, Lu Z, Shi R, Gu T, Zhang Q, Jin C, Yang R. J Colloid Interface Sci; 2023 Jul 26; 641():396-403. PubMed ID: 36948096 [Abstract] [Full Text] [Related]