These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


300 related items for PubMed ID: 34914761

  • 1. Acoustic emission corrosion feature extraction and severity prediction using hybrid wavelet packet transform and linear support vector classifier.
    May Z, Alam MK, Nayan NA, Rahman NAA, Mahmud MS.
    PLoS One; 2021; 16(12):e0261040. PubMed ID: 34914761
    [Abstract] [Full Text] [Related]

  • 2. A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals.
    Ferrando Chacón JL, Fernández de Barrena T, García A, Sáez de Buruaga M, Badiola X, Vicente J.
    Sensors (Basel); 2021 Sep 06; 21(17):. PubMed ID: 34502874
    [Abstract] [Full Text] [Related]

  • 3. Information theory filters for wavelet packet coefficient selection with application to corrosion type identification from acoustic emission signals.
    Van Dijck G, Van Hulle MM.
    Sensors (Basel); 2011 Sep 06; 11(6):5695-715. PubMed ID: 22163921
    [Abstract] [Full Text] [Related]

  • 4. Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification.
    Hariharan M, Sindhu R, Vijean V, Yazid H, Nadarajaw T, Yaacob S, Polat K.
    Comput Methods Programs Biomed; 2018 Mar 06; 155():39-51. PubMed ID: 29512503
    [Abstract] [Full Text] [Related]

  • 5. Detection of k-complexes in EEG signals using a multi-domain feature extraction coupled with a least square support vector machine classifier.
    Al-Salman W, Li Y, Wen P.
    Neurosci Res; 2021 Nov 06; 172():26-40. PubMed ID: 33965451
    [Abstract] [Full Text] [Related]

  • 6. Classification of spot-welded joint strength using ultrasonic signal time-frequency features and PSO-SVM method.
    Wang X, Guan S, Hua L, Wang B, He X.
    Ultrasonics; 2019 Jan 06; 91():161-169. PubMed ID: 30146324
    [Abstract] [Full Text] [Related]

  • 7. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.
    Chaudhary S, Taran S, Bajaj V, Siuly S.
    Comput Methods Programs Biomed; 2020 Apr 06; 187():105325. PubMed ID: 31964514
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Detection of driver drowsiness using wavelet analysis of heart rate variability and a support vector machine classifier.
    Li G, Chung WY.
    Sensors (Basel); 2013 Dec 02; 13(12):16494-511. PubMed ID: 24316564
    [Abstract] [Full Text] [Related]

  • 14. Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal.
    B VP, Chinara S.
    J Neurosci Methods; 2021 Jan 01; 347():108927. PubMed ID: 32941920
    [Abstract] [Full Text] [Related]

  • 15. Deep Multi-View Feature Learning for EEG-Based Epileptic Seizure Detection.
    Tian X, Deng Z, Ying W, Choi KS, Wu D, Qin B, Wang J, Shen H, Wang S.
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct 01; 27(10):1962-1972. PubMed ID: 31514144
    [Abstract] [Full Text] [Related]

  • 16. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection.
    Chen H, Yuan X, Li J, Pei Z, Zheng X.
    Comput Methods Programs Biomed; 2019 Sep 01; 178():163-173. PubMed ID: 31416545
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.