These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


183 related items for PubMed ID: 34918838

  • 1. The changes in plant and soil C pools and their C:N stoichiometry control grassland N retention under elevated N inputs.
    Yang S, Liu W, Guo L, Wang C, Deng M, Peng Z, Liu L.
    Ecol Appl; 2022 Mar; 32(2):e2517. PubMed ID: 34918838
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Extensive management promotes plant and microbial nitrogen retention in temperate grassland.
    de Vries FT, Bloem J, Quirk H, Stevens CJ, Bol R, Bardgett RD.
    PLoS One; 2012 Mar; 7(12):e51201. PubMed ID: 23227252
    [Abstract] [Full Text] [Related]

  • 4. Realistic rates of nitrogen addition increase carbon flux rates but do not change soil carbon stocks in a temperate grassland.
    Wilcots ME, Schroeder KM, DeLancey LC, Kjaer SJ, Hobbie SE, Seabloom EW, Borer ET.
    Glob Chang Biol; 2022 Aug; 28(16):4819-4831. PubMed ID: 35593000
    [Abstract] [Full Text] [Related]

  • 5. Increased soil carbon storage through plant diversity strengthens with time and extends into the subsoil.
    Lange M, Eisenhauer N, Chen H, Gleixner G.
    Glob Chang Biol; 2023 May; 29(9):2627-2639. PubMed ID: 36799509
    [Abstract] [Full Text] [Related]

  • 6. Effect of nitrogen addition on soil net nitrogen mineralization in topsoil and subsoil regulated by soil microbial properties and mineral protection: Evidence from a long-term grassland experiment.
    Xu J, Wang Y, Zhang Y, Li Q, Du B, Asitaiken JLHT, Liu Y, Niu D, Fu H, Yuan X.
    Sci Total Environ; 2024 Oct 15; 947():174686. PubMed ID: 38992360
    [Abstract] [Full Text] [Related]

  • 7. Sensitivity of grassland carbon pools to plant diversity, elevated CO2, and soil nitrogen addition over 19 years.
    Pastore MA, Hobbie SE, Reich PB.
    Proc Natl Acad Sci U S A; 2021 Apr 27; 118(17):. PubMed ID: 33875587
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland.
    Jia J, Cao Z, Liu C, Zhang Z, Lin L, Wang Y, Haghipour N, Wacker L, Bao H, Dittmar T, Simpson MJ, Yang H, Crowther TW, Eglinton TI, He JS, Feng X.
    Glob Chang Biol; 2019 Dec 27; 25(12):4383-4393. PubMed ID: 31479577
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Nitrogen and phosphorus additions alter foliar nutrient concentrations of dominant grass species and regulate primary productivity in an Inner Mongolian meadow steppe.
    Xiao H, Li P, Monaco TA, Liu Y, Rong Y.
    Sci Total Environ; 2024 Feb 20; 912():168791. PubMed ID: 38000742
    [Abstract] [Full Text] [Related]

  • 12. Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe.
    Peng Y, Li F, Zhou G, Fang K, Zhang D, Li C, Yang G, Wang G, Wang J, Yang Y.
    Glob Chang Biol; 2017 Dec 20; 23(12):5249-5259. PubMed ID: 28614594
    [Abstract] [Full Text] [Related]

  • 13. Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland.
    Ning Q, Hättenschwiler S, Lü X, Kardol P, Zhang Y, Wei C, Xu C, Huang J, Li A, Yang J, Wang J, Peng Y, Peñuelas J, Sardans J, He J, Xu Z, Gao Y, Han X.
    Glob Chang Biol; 2021 Nov 20; 27(22):5976-5988. PubMed ID: 34343388
    [Abstract] [Full Text] [Related]

  • 14. Carbon and nitrogen addition-derived enzyme activities in topsoil but nitrogen availability in subsoil controls the response of soil organic carbon decomposition to warming.
    Yang S, Zhao X, Sun Z, Wang L, Tian P, Wang Q.
    Sci Total Environ; 2024 Nov 01; 949():175261. PubMed ID: 39098421
    [Abstract] [Full Text] [Related]

  • 15. Grassland establishment under varying resource availability: a test of positive and negative feedback.
    Baer SG, Blair JM.
    Ecology; 2008 Jul 01; 89(7):1859-71. PubMed ID: 18705373
    [Abstract] [Full Text] [Related]

  • 16. Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: A meta-analysis.
    Jiang ZY, Hu ZM, Lai DYF, Han DR, Wang M, Liu M, Zhang M, Guo MY.
    Glob Chang Biol; 2020 Dec 01; 26(12):7186-7197. PubMed ID: 32870565
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. More sensitive microbial responses to the interactive effects of warming and altered precipitation in subsoil than topsoil of an alpine grassland ecosystem.
    Qi Q, Ning S, Guo X, Zhao J, Tian R, Gui H, He JS, Wang H, Zhang Z, Konstantinidis KT, Gao Q, Wang Y, Li S, Zhao W, Yang Y, Zhou J.
    Glob Chang Biol; 2024 Sep 01; 30(9):e17487. PubMed ID: 39254230
    [Abstract] [Full Text] [Related]

  • 19. Effects of anthropogenic fragmentation on primary productivity and soil carbon storage in temperate mountain grasslands.
    Cojoc EI, Postolache C, Olariu B, Beierkuhnlein C.
    Environ Monit Assess; 2016 Nov 01; 188(11):653. PubMed ID: 27822788
    [Abstract] [Full Text] [Related]

  • 20. Plant nitrogen retention in alpine grasslands of the Tibetan Plateau under multi-level nitrogen addition.
    Yu J, Xu-Ri, Qu S, Li F, Wei D, Borjigidai A.
    Sci Rep; 2023 Jan 17; 13(1):877. PubMed ID: 36650209
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.