These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
153 related items for PubMed ID: 34919515
1. Assessment of Calibration Models for Cuff-Less Blood Pressure Measurement After One Year of Aging. Yavarimanesh M, Block RC, Natarajan K, Mestha LK, Inan OT, Hahn JO, Mukkamala R. IEEE Trans Biomed Eng; 2022 Jun; 69(6):2087-2093. PubMed ID: 34919515 [Abstract] [Full Text] [Related]
2. Photoplethysmography Fast Upstroke Time Intervals Can Be Useful Features for Cuff-Less Measurement of Blood Pressure Changes in Humans. Natarajan K, Block RC, Yavarimanesh M, Chandrasekhar A, Mestha LK, Inan OT, Hahn JO, Mukkamala R. IEEE Trans Biomed Eng; 2022 Jan; 69(1):53-62. PubMed ID: 34097603 [Abstract] [Full Text] [Related]
4. PPG Sensor Contact Pressure Should Be Taken Into Account for Cuff-Less Blood Pressure Measurement. Chandrasekhar A, Yavarimanesh M, Natarajan K, Hahn JO, Mukkamala R. IEEE Trans Biomed Eng; 2020 Nov; 67(11):3134-3140. PubMed ID: 32142414 [Abstract] [Full Text] [Related]
5. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time. Li Y, Wang Z, Zhang L, Yang X, Song J. Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801 [Abstract] [Full Text] [Related]
6. Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference. Gao M, Olivier NB, Mukkamala R. Physiol Rep; 2016 May; 4(10):. PubMed ID: 27233300 [Abstract] [Full Text] [Related]
7. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms. Zuhair Sameen A, Jaafar R, Zahedi E, Kok Beng G. J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952 [Abstract] [Full Text] [Related]
8. Accuracy and User Acceptability of 24-hour Ambulatory Blood Pressure Monitoring by a Prototype Cuffless Multi-Sensor Device Compared to a Conventional Oscillometric Device. Heimark S, Hove C, Stepanov A, Boysen ES, Gløersen Ø, Bøtke-Rasmussen KG, Gravdal HJ, Narayanapillai K, Fadl Elmula FEM, Seeberg TM, Larstorp ACK, Waldum-Grevbo B. Blood Press; 2023 Dec; 32(1):2274595. PubMed ID: 37885101 [Abstract] [Full Text] [Related]
9. Pulse arrival time as a surrogate of blood pressure. Finnegan E, Davidson S, Harford M, Jorge J, Watkinson P, Young D, Tarassenko L, Villarroel M. Sci Rep; 2021 Nov 23; 11(1):22767. PubMed ID: 34815419 [Abstract] [Full Text] [Related]
10. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time. Martin SL, Carek AM, Kim CS, Ashouri H, Inan OT, Hahn JO, Mukkamala R. Sci Rep; 2016 Dec 15; 6():39273. PubMed ID: 27976741 [Abstract] [Full Text] [Related]
11. The Effects of Filtering PPG Signal on Pulse Arrival Time-Systolic Blood Pressure Correlation. Wang W, Marefat F, Mohseni P, Kilgore K, Najafizadeh L. Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul 15; 2022():674-677. PubMed ID: 36086297 [Abstract] [Full Text] [Related]
12. Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure. Finnegan E, Davidson S, Harford M, Watkinson P, Tarassenko L, Villarroel M. Sci Rep; 2023 Jan 18; 13(1):986. PubMed ID: 36653426 [Abstract] [Full Text] [Related]
13. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique. Nabeel PM, Jayaraj J, Mohanasankar S. Physiol Meas; 2017 Nov 30; 38(12):2122-2140. PubMed ID: 29058686 [Abstract] [Full Text] [Related]
14. PPG-Based Blood Pressure Monitoring by Pulse Wave Analysis: Calibration Parameters are Stable for Three Months. Proenca M, Bonnier G, Ferrario D, Verjus C, Lemay M. Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul 30; 2019():5560-5563. PubMed ID: 31947115 [Abstract] [Full Text] [Related]
15. Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations. Joung J, Jung CW, Lee HC, Chae MJ, Kim HS, Park J, Shin WY, Kim C, Lee M, Choi C. Sci Rep; 2023 May 27; 13(1):8605. PubMed ID: 37244974 [Abstract] [Full Text] [Related]
16. Comparison of cuff-based and cuffless continuous blood pressure measurements in children and adolescents. Zachwieja J, Neyman-Bartkowiak A, Rabiega A, Wojciechowska M, Barabasz M, Musielak A, Silska-Dittmar M, Ostalska-Nowicka D. Clin Exp Hypertens; 2020 Aug 17; 42(6):512-518. PubMed ID: 31941385 [Abstract] [Full Text] [Related]
17. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG. Liu J, Li Y, Ding XR, Dai WX, Zhang YT. Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug 17; 2015():5973-6. PubMed ID: 26737652 [Abstract] [Full Text] [Related]
19. Cuff-Less Blood Pressure Estimation Using Pulse Waveform Analysis and Pulse Arrival Time. Yoon YZ, Kang JM, Kwon Y, Park S, Noh S, Kim Y, Park J, Hwang SW, Young-Zoon Yoon, Jae Min Kang, Yongjoo Kwon, Sangyun Park, Seungwoo Noh, Younho Kim, Jongae Park, Sung Woo Hwang. IEEE J Biomed Health Inform; 2018 Jul 21; 22(4):1068-1074. PubMed ID: 28613189 [Abstract] [Full Text] [Related]
20. Photoplethysmography derivatives and pulse transit time in overnight blood pressure monitoring. Shahrbabaki SS, Ahmed B, Penzel T, Cvetkovic D. Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug 21; 2016():2855-2858. PubMed ID: 28268912 [Abstract] [Full Text] [Related] Page: [Next] [New Search]