These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Electrochemical studies of arsenite oxidase: an unusual example of a highly cooperative two-electron molybdenum center. Hoke KR, Cobb N, Armstrong FA, Hille R. Biochemistry; 2004 Feb 17; 43(6):1667-74. PubMed ID: 14769044 [Abstract] [Full Text] [Related]
6. YcbX and yiiM, two novel determinants for resistance of Escherichia coli to N-hydroxylated base analogues. Kozmin SG, Leroy P, Pavlov YI, Schaaper RM. Mol Microbiol; 2008 Apr 17; 68(1):51-65. PubMed ID: 18312271 [Abstract] [Full Text] [Related]
7. Effect of exchange of the cysteine molybdenum ligand with selenocysteine on the structure and function of the active site in human sulfite oxidase. Reschke S, Niks D, Wilson H, Sigfridsson KG, Haumann M, Rajagopalan KV, Hille R, Leimkühler S. Biochemistry; 2013 Nov 19; 52(46):8295-303. PubMed ID: 24147957 [Abstract] [Full Text] [Related]
8. Direct catalytic electrochemistry of sulfite dehydrogenase: mechanistic insights and contrasts with related Mo enzymes. Rapson TD, Kappler U, Bernhardt PV. Biochim Biophys Acta; 2008 Oct 19; 1777(10):1319-25. PubMed ID: 18601898 [Abstract] [Full Text] [Related]
9. Structure of the molybdenum site in YedY, a sulfite oxidase homologue from Escherichia coli. Havelius KG, Reschke S, Horn S, Döring A, Niks D, Hille R, Schulzke C, Leimkühler S, Haumann M. Inorg Chem; 2011 Feb 07; 50(3):741-8. PubMed ID: 21190337 [Abstract] [Full Text] [Related]
10. The catalytic mechanism for NO production by the mitochondrial enzyme, sulfite oxidase. Mutus B. Biochem J; 2019 Jul 15; 476(13):1955-1956. PubMed ID: 31308158 [Abstract] [Full Text] [Related]
15. Short circuiting a sulfite oxidising enzyme with direct electrochemistry: active site substitutions and their effect on catalysis and electron transfer. Rapson TD, Kappler U, Hanson GR, Bernhardt PV. Biochim Biophys Acta; 2011 Jan 15; 1807(1):108-18. PubMed ID: 20863809 [Abstract] [Full Text] [Related]
16. Determination of an optimal potential window for catalysis by E. coli dimethyl sulfoxide reductase and hypothesis on the role of Mo(V) in the reaction pathway. Heffron K, Léger C, Rothery RA, Weiner JH, Armstrong FA. Biochemistry; 2001 Mar 13; 40(10):3117-26. PubMed ID: 11258926 [Abstract] [Full Text] [Related]
17. Oxo-Mo(IV)(dithiolene)thiolato complexes: analogue of reduced sulfite oxidase. Mitra J, Sarkar S. Inorg Chem; 2013 Mar 18; 52(6):3032-42. PubMed ID: 23461669 [Abstract] [Full Text] [Related]
18. Oxyl and hydroxyl radical transfer in mitochondrial amidoxime reducing component-catalyzed nitrite reduction. Yang J, Giles LJ, Ruppelt C, Mendel RR, Bittner F, Kirk ML. J Am Chem Soc; 2015 Apr 29; 137(16):5276-9. PubMed ID: 25897643 [Abstract] [Full Text] [Related]
20. The reductive half-reaction of xanthine oxidase. The involvement of prototropic equilibria in the course of the catalytic sequence. Kim JH, Ryan MG, Knaut H, Hille R. J Biol Chem; 1996 Mar 22; 271(12):6771-80. PubMed ID: 8636099 [Abstract] [Full Text] [Related] Page: [Next] [New Search]