These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
128 related items for PubMed ID: 3493038
1. Time-resolved X-ray diffraction studies of frog skeletal muscle isometrically twitched by two successive stimuli using synchrotron radiation. Tanaka H, Kobayashi T, Amemiya Y, Wakabayashi K. Biophys Chem; 1986 Dec 15; 25(2):161-8. PubMed ID: 3493038 [Abstract] [Full Text] [Related]
2. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Wakabayashi K, Sugimoto Y, Tanaka H, Ueno Y, Takezawa Y, Amemiya Y. Biophys J; 1994 Dec 15; 67(6):2422-35. PubMed ID: 7779179 [Abstract] [Full Text] [Related]
3. Time-resolved x-ray diffraction studies on the intensity changes of the 5.9 and 5.1 nm actin layer lines from frog skeletal muscle during an isometric tetanus using synchrotron radiation. Wakabayashi K, Tanaka H, Amemiya Y, Fujishima A, Kobayashi T, Hamanaka T, Sugi H, Mitsui T. Biophys J; 1985 Jun 15; 47(6):847-50. PubMed ID: 3874653 [Abstract] [Full Text] [Related]
4. Time-resolved x-ray study of effect of sinusoidal length change on tetanized frog muscle. Wakabayashi K, Tanaka H, Kobayashi T, Amemiya Y, Hamanaka T, Nishizawa S, Sugi H, Mitsui T. Biophys J; 1986 Feb 15; 49(2):581-4. PubMed ID: 3485452 [Abstract] [Full Text] [Related]
5. Time-resolved synchrotron X-ray diffraction studies of a single frog skeletal muscle fiber. Time courses of intensity changes of the equatorial reflections and intracellular Ca2+ transients. Konishi M, Wakabayashi K, Kurihara S, Higuchi H, Onodera N, Umazume Y, Tanaka H, Hamanaka T, Amemiya Y. Biophys Chem; 1991 Mar 15; 39(3):287-97. PubMed ID: 1863689 [Abstract] [Full Text] [Related]
6. X-ray evidence that in contracting live frog muscles there exist two distinct populations of myosin heads. Bordas J, Lowy J, Svensson A, Harries JE, Diakun GP, Gandy J, Miles C, Mant GR, Towns-Andrews E. Biophys J; 1995 Apr 15; 68(4 Suppl):99S-104S; discussion 104S-105S. PubMed ID: 7787116 [Abstract] [Full Text] [Related]
7. Structural changes during contraction in vertebrate skeletal muscle as studied by time-resolved X-ray diffraction technique. Sugi H, Tanaka H, Wakabayashi K, Kobayashi T, Iwamoto H, Hamanaka T, Mitsui T, Amemiya Y. Biomed Biochim Acta; 1986 Apr 15; 45(1-2):S15-22. PubMed ID: 3485970 [Abstract] [Full Text] [Related]
8. An X-ray diffraction study of frog skeletal muscle during shortening near the maximum velocity. Yagi N, Takemori S, Watanabe M. J Mol Biol; 1993 Jun 05; 231(3):668-77. PubMed ID: 8515444 [Abstract] [Full Text] [Related]
9. Crossbridge states in isometrically contracting fish muscle: evidence for swinging of myosin heads on actin. Harford JJ, Chew MW, Squire JM, Towns-Andrews E. Adv Biophys; 1991 Jun 05; 27():45-61. PubMed ID: 1755367 [Abstract] [Full Text] [Related]
10. An x-ray diffraction study on early structural changes in skeletal muscle contraction. Yagi N. Biophys J; 2003 Feb 05; 84(2 Pt 1):1093-102. PubMed ID: 12547790 [Abstract] [Full Text] [Related]
11. A time-resolved X-ray diffraction study of muscle during twitch. Matsubara I, Yagi N. J Physiol; 1978 May 05; 278():297-307. PubMed ID: 307597 [Abstract] [Full Text] [Related]
12. Time-resolved X-ray diffraction studies of myosin head movements in live frog sartorius muscle during isometric and isotonic contractions. Martin-Fernandez ML, Bordas J, Diakun G, Harries J, Lowy J, Mant GR, Svensson A, Towns-Andrews E. J Muscle Res Cell Motil; 1994 Jun 05; 15(3):319-48. PubMed ID: 7857403 [Abstract] [Full Text] [Related]
13. Two-dimensional time resolved X-ray diffraction of muscle: recent results. Bordas J, Diakun GP, Harries JE, Lewis RA, Mant GR, Martin-Fernandez ML, Towns-Andrews E. Adv Biophys; 1991 Jun 05; 27():15-33. PubMed ID: 1755357 [Abstract] [Full Text] [Related]
14. Changes in conformation of myosin heads during the development of isometric contraction and rapid shortening in single frog muscle fibres. Piazzesi G, Reconditi M, Dobbie I, Linari M, Boesecke P, Diat O, Irving M, Lombardi V. J Physiol; 1999 Jan 15; 514 ( Pt 2)(Pt 2):305-12. PubMed ID: 9852315 [Abstract] [Full Text] [Related]
15. Factors affecting the equatorial X-ray diffraction pattern from contracting frog skeletal muscle. Tanaka H, Hashizume H, Sugi H. Adv Exp Med Biol; 1984 Jan 15; 170():193-202. PubMed ID: 6611027 [Abstract] [Full Text] [Related]
16. Muscle force is generated by myosin heads stereospecifically attached to actin. Bershitsky SY, Tsaturyan AK, Bershitskaya ON, Mashanov GI, Brown P, Burns R, Ferenczi MA. Nature; 1997 Jul 10; 388(6638):186-90. PubMed ID: 9217160 [Abstract] [Full Text] [Related]
17. Effect of stretch and release on equatorial X-ray diffraction during a twitch contraction of frog skeletal muscle. Iwamoto H, Kobayashi T, Amemiya Y, Wakabayashi K. Biophys J; 1995 Jan 10; 68(1):227-34. PubMed ID: 7711245 [Abstract] [Full Text] [Related]
18. Effects of 2,3-butanedione monoxime on contraction of frog skeletal muscles: an X-ray diffraction study. Yagi N, Takemori S, Watanabe M, Horiuti K, Amemiya Y. J Muscle Res Cell Motil; 1992 Apr 10; 13(2):153-60. PubMed ID: 1534565 [Abstract] [Full Text] [Related]
19. A structural origin of latency relaxation in frog skeletal muscle. Yagi N. Biophys J; 2007 Jan 01; 92(1):162-71. PubMed ID: 17028137 [Abstract] [Full Text] [Related]
20. Intensity changes of actin-based layer lines from frog skeletal muscles during an isometric contraction. Wakabayashi K, Ueno Y, Amemiya Y, Tanaka H. Adv Exp Med Biol; 1988 Jan 01; 226():353-67. PubMed ID: 3261487 [Abstract] [Full Text] [Related] Page: [Next] [New Search]