These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 34941268

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.
    Hu W, Lin L, Zhang R, Yang C, Yang J.
    J Am Chem Soc; 2017 Nov 01; 139(43):15429-15436. PubMed ID: 29027456
    [Abstract] [Full Text] [Related]

  • 3. Direct Z-Scheme Water Splitting Photocatalyst Based on Two-Dimensional Van Der Waals Heterostructures.
    Zhang R, Zhang L, Zheng Q, Gao P, Zhao J, Yang J.
    J Phys Chem Lett; 2018 Sep 20; 9(18):5419-5424. PubMed ID: 30180588
    [Abstract] [Full Text] [Related]

  • 4. Mechanism of the two-dimensional WSeTe/Zr2CO2 direct Z-scheme van der Waals heterojunction as a photocatalyst for water splitting.
    Cao J, Zhang X, Zhao S, Lu X, Ma H.
    Phys Chem Chem Phys; 2022 Sep 14; 24(35):21030-21039. PubMed ID: 36000569
    [Abstract] [Full Text] [Related]

  • 5. Two-Dimensional ZnS/SnS2 Heterojunction as a Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study.
    Chen X, Zhao C, Wu H, Shi Y, Chen C, Zhou X.
    Materials (Basel); 2022 May 26; 15(11):. PubMed ID: 35683085
    [Abstract] [Full Text] [Related]

  • 6. Visible-Light Photocatalytic Overall Water Splitting on a B4C3/CxNy Z-Scheme Heterojunction: Role of Ultrafast Carrier Recombination-Transfer Kinetics.
    Lin CB, Sheng YX, Sun FL, Chen WX, Zhuang GL.
    J Phys Chem Lett; 2023 Dec 21; 14(50):11447-11456. PubMed ID: 38085811
    [Abstract] [Full Text] [Related]

  • 7. Designing SnS/MoS2 van der Waals heterojunction for direct Z-scheme photocatalytic overall water-splitting by DFT investigation.
    Jia X, Wang J, Lu Y, Sun J, Li Y, Wang Y, Zhang J.
    Phys Chem Chem Phys; 2022 Sep 14; 24(35):21321-21330. PubMed ID: 36043354
    [Abstract] [Full Text] [Related]

  • 8. Insights into Photoinduced Carrier Dynamics and Overall Water Splitting of Z-Scheme van der Waals Heterostructures with Intrinsic Electric Polarization.
    Wang J, Zhang X, Song X, Fan Y, Zhang Z, Zhao M.
    J Phys Chem Lett; 2023 Jan 26; 14(3):798-808. PubMed ID: 36652698
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. First-Principles Computational Screening of Two-Dimensional Polar Materials for Photocatalytic Water Splitting.
    Gao Y, Zhang Q, Hu W, Yang J.
    ACS Nano; 2024 Jul 23; 18(29):19381-19390. PubMed ID: 38995677
    [Abstract] [Full Text] [Related]

  • 11. Interfacial coupling induced direct Z-scheme water splitting in metal-free photocatalyst: C3N/g-C3N4 heterojunctions.
    Wang J, Li X, You Y, Yang X, Wang Y, Li Q.
    Nanotechnology; 2018 Sep 07; 29(36):365401. PubMed ID: 29926813
    [Abstract] [Full Text] [Related]

  • 12. Unraveling the Mechanism of Photoinduced Charge-Transfer Process in Bilayer Heterojunction.
    Jin H, Li J, Wei Y, Dai Y, Guo H.
    ACS Appl Mater Interfaces; 2018 Aug 01; 10(30):25401-25408. PubMed ID: 29987925
    [Abstract] [Full Text] [Related]

  • 13. Direct observation of carrier migration in heterojunctions to discuss the p-n and direct Z-scheme heterojunctions.
    Yang L, Zhou JP, Chen QW, Yang HD.
    Nanotechnology; 2022 Jul 26; 33(42):. PubMed ID: 35817015
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. A rationally designed two-dimensional MoSe2/Ti2CO2 heterojunction for photocatalytic overall water splitting: simultaneously suppressing electron-hole recombination and photocorrosion.
    Fu CF, Li X, Yang J.
    Chem Sci; 2021 Jan 13; 12(8):2863-2869. PubMed ID: 34164051
    [Abstract] [Full Text] [Related]

  • 16. A review on development and modification strategies of MOFs Z-scheme heterojunction for photocatalytic wastewater treatment, water splitting, and DFT calculations.
    Fard NE, Ali NS, Saady NMC, Albayati TM, Salih IK, Zendehboudi S, Harharah HN, Harharah RH.
    Heliyon; 2024 Jul 15; 10(13):e32861. PubMed ID: 39027550
    [Abstract] [Full Text] [Related]

  • 17. WS2/MoSe2 van der Waals heterojunctions applied to photocatalysts for overall water splitting.
    Li L, Yang H, Yang P.
    J Colloid Interface Sci; 2023 Nov 15; 650(Pt B):1312-1318. PubMed ID: 37478748
    [Abstract] [Full Text] [Related]

  • 18. Transforming Photocatalytic g-C3 N4 /MoSe2 into a Direct Z-Scheme System via Boron-Doping: A Hybrid DFT Study.
    Ai C, Li J, Yang L, Wang Z, Wang Z, Zeng Y, Deng R, Lin S, Wang CZ.
    ChemSusChem; 2020 Sep 18; 13(18):4985-4993. PubMed ID: 32671990
    [Abstract] [Full Text] [Related]

  • 19. InN/XS2 (X = Zr, Hf) vdW heterojunctions: promising Z-scheme systems with high hydrogen evolution activity for photocatalytic water splitting.
    Dai ZN, Xu Y, Zou DF, Yin WJ, Wang JN.
    Phys Chem Chem Phys; 2023 Mar 15; 25(11):8144-8152. PubMed ID: 36877127
    [Abstract] [Full Text] [Related]

  • 20. Heterojunction Photocatalysts.
    Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA.
    Adv Mater; 2017 May 15; 29(20):. PubMed ID: 28220969
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.