These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 34981606

  • 1. Vacuolar (H+ )-ATPase subunit c is essential for the survival and systemic RNA interference response in Locusta migratoria.
    Shi X, Liu X, Cooper AM, Silver K, Merzendorfer H, Zhu KY, Zhang J.
    Pest Manag Sci; 2022 Apr; 78(4):1555-1566. PubMed ID: 34981606
    [Abstract] [Full Text] [Related]

  • 2. V-ATPase subunit a is required for survival and midgut development of Locusta migratoria.
    Liu XJ, Liang XY, Guo J, Shi XK, Merzendorfer H, Zhu KY, Zhang JZ.
    Insect Mol Biol; 2022 Feb; 31(1):60-72. PubMed ID: 34528734
    [Abstract] [Full Text] [Related]

  • 3. Identification of Rab family genes and functional analyses of LmRab5 and LmRab11A in the development and RNA interference of Locusta migratoria.
    Abbas M, Fan YH, Shi XK, Gao L, Wang YL, Li T, Cooper AMW, Silver K, Zhu KY, Zhang JZ.
    Insect Sci; 2022 Apr; 29(2):320-332. PubMed ID: 34347932
    [Abstract] [Full Text] [Related]

  • 4. Clathrin heavy chain is essential for the development and reproduction of Locusta migratoria.
    Shi X, Li S, Yang L, Liu X, Merzendorfer H, Zhu KY, Zhang J.
    Insect Sci; 2022 Dec; 29(6):1601-1611. PubMed ID: 35290723
    [Abstract] [Full Text] [Related]

  • 5. Vacuolar ATPase subunit H is essential for the survival and moulting of Locusta migratoria manilensis.
    Li C, Xia Y.
    Insect Mol Biol; 2012 Aug; 21(4):405-13. PubMed ID: 22642225
    [Abstract] [Full Text] [Related]

  • 6. The ABC transporter ABCH-9C is needed for cuticle barrier construction in Locusta migratoria.
    Yu Z, Wang Y, Zhao X, Liu X, Ma E, Moussian B, Zhang J.
    Insect Biochem Mol Biol; 2017 Aug; 87():90-99. PubMed ID: 28610908
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. RNA interference to reveal roles of β-N-acetylglucosaminidase gene during molting process in Locusta migratoria.
    Rong S, Li DQ, Zhang XY, Li S, Zhu KY, Guo YP, Ma EB, Zhang JZ.
    Insect Sci; 2013 Feb; 20(1):109-19. PubMed ID: 23955831
    [Abstract] [Full Text] [Related]

  • 10. Effect of RNAi-mediated silencing of two Knickkopf family genes (LmKnk2 and LmKnk3) on cuticle formation and insecticide susceptibility in Locusta migratoria.
    Zhang R, Zhao X, Liu X, Zhang X, Yu R, Ma E, Moussian B, Zhu K, Zhang J.
    Pest Manag Sci; 2020 Sep; 76(9):2907-2917. PubMed ID: 32358831
    [Abstract] [Full Text] [Related]

  • 11. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust.
    Song H, Zhang J, Li D, Cooper AMW, Silver K, Li T, Liu X, Ma E, Zhu KY, Zhang J.
    Insect Biochem Mol Biol; 2017 Jul; 86():68-80. PubMed ID: 28576656
    [Abstract] [Full Text] [Related]

  • 12. Lethal giant larvae gene is required for normal nymphal development and midgut morphogenesis in Locusta migratoria.
    Shi X, Liu X, Silver K, Zhu KY, Zhang J.
    Insect Sci; 2022 Aug; 29(4):1017-1029. PubMed ID: 34978756
    [Abstract] [Full Text] [Related]

  • 13. RNAi-mediated silencing of the neverland gene inhibits molting in the migratory locust, Locusta migratoria.
    Lv J, He QH, Shi P, Zhou F, Zhang TT, Zhang M, Zhang XY.
    Pestic Biochem Physiol; 2024 Mar; 200():105845. PubMed ID: 38582577
    [Abstract] [Full Text] [Related]

  • 14. Development of RNAi methods for Peregrinus maidis, the corn planthopper.
    Yao J, Rotenberg D, Afsharifar A, Barandoc-Alviar K, Whitfield AE.
    PLoS One; 2013 Mar; 8(8):e70243. PubMed ID: 23950915
    [Abstract] [Full Text] [Related]

  • 15. dsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust, Locusta migratoria.
    Ren D, Cai Z, Song J, Wu Z, Zhou S.
    Insect Mol Biol; 2014 Apr; 23(2):175-84. PubMed ID: 24308607
    [Abstract] [Full Text] [Related]

  • 16. Contributions of dsRNases to differential RNAi efficiencies between the injection and oral delivery of dsRNA in Locusta migratoria.
    Song H, Fan Y, Zhang J, Cooper AM, Silver K, Li D, Li T, Ma E, Zhu KY, Zhang J.
    Pest Manag Sci; 2019 Jun; 75(6):1707-1717. PubMed ID: 30525311
    [Abstract] [Full Text] [Related]

  • 17. Nuclear receptor HR3 controls locust molt by regulating chitin synthesis and degradation genes of Locusta migratoria.
    Zhao X, Qin Z, Liu W, Liu X, Moussian B, Ma E, Li S, Zhang J.
    Insect Biochem Mol Biol; 2018 Jan; 92():1-11. PubMed ID: 29113754
    [Abstract] [Full Text] [Related]

  • 18. F1 -ATP synthase α-subunit: a potential target for RNAi-mediated pest management of Locusta migratoria manilensis.
    Hu J, Xia Y.
    Pest Manag Sci; 2016 Jul; 72(7):1433-9. PubMed ID: 26558746
    [Abstract] [Full Text] [Related]

  • 19. Silencing of transcription factor E93 inhibits adult morphogenesis and disrupts cuticle, wing and ovary development in Locusta migratoria.
    Liu XJ, Jun G, Liang XY, Zhang XY, Zhang TT, Liu WM, Zhang JZ, Zhang M.
    Insect Sci; 2022 Apr; 29(2):333-343. PubMed ID: 34117716
    [Abstract] [Full Text] [Related]

  • 20. Synthetic Nanoscale RNAi Constructs as Pesticides for the Control of Locust Migratoria.
    Lu Q, Cui H, Li W, Liu T, Chen Q, Yang Q.
    J Agric Food Chem; 2022 Sep 07; 70(35):10762-10770. PubMed ID: 36000580
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.