These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


342 related items for PubMed ID: 34986191

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.
    Dembia CL, Silder A, Uchida TK, Hicks JL, Delp SL.
    PLoS One; 2017; 12(7):e0180320. PubMed ID: 28700630
    [Abstract] [Full Text] [Related]

  • 5. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW, Collins SH.
    J Appl Physiol (1985); 2015 Sep 01; 119(5):541-57. PubMed ID: 26159764
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM, Dick TJM, Giest TN, Nuckols RW, Lewek MD, Saul KR, Sawicki GS.
    J Neuroeng Rehabil; 2019 May 15; 16(1):57. PubMed ID: 31092269
    [Abstract] [Full Text] [Related]

  • 8. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR, Jacobs DA, Ferris DP, Remy CD.
    J Neuroeng Rehabil; 2015 Nov 04; 12():97. PubMed ID: 26536868
    [Abstract] [Full Text] [Related]

  • 9. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
    Wang W, Ding J, Wang Y, Liu Y, Zhang J, Liu J.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb 25; 39(1):75-83. PubMed ID: 35231968
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds.
    Bryan GM, Franks PW, Song S, Voloshina AS, Reyes R, O'Donovan MP, Gregorczyk KN, Collins SH.
    J Neuroeng Rehabil; 2021 Oct 18; 18(1):152. PubMed ID: 34663372
    [Abstract] [Full Text] [Related]

  • 15. Simulating Ideal Assistive Strategies to Reduce the Metabolic Cost of Walking in the Elderly.
    Cseke B, Uchida TK, Doumit M.
    IEEE Trans Biomed Eng; 2022 Sep 18; 69(9):2797-2805. PubMed ID: 35201978
    [Abstract] [Full Text] [Related]

  • 16. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W, Zhang Z, Chen C, He Y, Wang D, Wu X.
    Biosensors (Basel); 2021 Oct 15; 11(10):. PubMed ID: 34677349
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Design of a Multi-Joint Passive Exoskeleton for Vertical Jumping Using Optimal Control.
    Ostraich B, Riemer R.
    IEEE Trans Neural Syst Rehabil Eng; 2022 Oct 15; 30():2815-2823. PubMed ID: 36155480
    [Abstract] [Full Text] [Related]

  • 20. Optimizing exoskeleton assistance to improve walking speed and energy economy for older adults.
    Lakmazaheri A, Song S, Vuong BB, Biskner B, Kado DM, Collins SH.
    J Neuroeng Rehabil; 2024 Jan 02; 21(1):1. PubMed ID: 38167151
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.