These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 34994155

  • 1. CFTR deficiency aggravates Ang II induced vasoconstriction and hypertension by regulating Ca2+ influx and RhoA/Rock pathway in VSMCs.
    Zhao L, Yuan F, Pan N, Yu Y, Yang H, Liu Y, Wang R, Zhang B, Wang G.
    Front Biosci (Landmark Ed); 2021 Dec 30; 26(12):1396-1410. PubMed ID: 34994155
    [Abstract] [Full Text] [Related]

  • 2. TMEM16A contributes to angiotensin II-induced cerebral vasoconstriction via the RhoA/ROCK signaling pathway.
    Li RS, Wang Y, Chen HS, Jiang FY, Tu Q, Li WJ, Yin RX.
    Mol Med Rep; 2016 Apr 30; 13(4):3691-9. PubMed ID: 26955761
    [Abstract] [Full Text] [Related]

  • 3. Resveratrol prevents AngII-induced hypertension via AMPK activation and RhoA/ROCK suppression in mice.
    Cao X, Luo T, Luo X, Tang Z.
    Hypertens Res; 2014 Sep 30; 37(9):803-10. PubMed ID: 24965170
    [Abstract] [Full Text] [Related]

  • 4. Negative regulation of RhoA/Rho kinase by angiotensin II type 2 receptor in vascular smooth muscle cells: role in angiotensin II-induced vasodilation in stroke-prone spontaneously hypertensive rats.
    Savoia C, Tabet F, Yao G, Schiffrin EL, Touyz RM.
    J Hypertens; 2005 May 30; 23(5):1037-45. PubMed ID: 15834290
    [Abstract] [Full Text] [Related]

  • 5. Tacrolimus Causes Hypertension by Increasing Vascular Contractility via RhoA (Ras Homolog Family Member A)/ROCK (Rho-Associated Protein Kinase) Pathway in Mice.
    Wang X, Jiang S, Fei L, Dong F, Xie L, Qiu X, Lei Y, Guo J, Zhong M, Ren X, Yang Y, Zhao L, Zhang G, Wang H, Tang C, Yu L, Liu R, Patzak A, Persson PB, Hultström M, Wei Q, Lai EY, Zheng Z.
    Hypertension; 2022 Oct 30; 79(10):2228-2238. PubMed ID: 35938417
    [Abstract] [Full Text] [Related]

  • 6. Agonist- and depolarization-induced signals for myosin light chain phosphorylation and force generation of cultured vascular smooth muscle cells.
    Woodsome TP, Polzin A, Kitazawa K, Eto M, Kitazawa T.
    J Cell Sci; 2006 May 01; 119(Pt 9):1769-80. PubMed ID: 16608882
    [Abstract] [Full Text] [Related]

  • 7. Increased PDZ-RhoGEF/RhoA/Rho kinase signaling in small mesenteric arteries of angiotensin II-induced hypertensive rats.
    Hilgers RH, Todd J, Webb RC.
    J Hypertens; 2007 Aug 01; 25(8):1687-97. PubMed ID: 17620967
    [Abstract] [Full Text] [Related]

  • 8. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle.
    Seko T, Ito M, Kureishi Y, Okamoto R, Moriki N, Onishi K, Isaka N, Hartshorne DJ, Nakano T.
    Circ Res; 2003 Mar 07; 92(4):411-8. PubMed ID: 12600888
    [Abstract] [Full Text] [Related]

  • 9. RhoA/ROCK Pathway Activation is Regulated by AT1 Receptor and Participates in Smooth Muscle Migration and Dedifferentiation via Promoting Actin Cytoskeleton Polymerization.
    Qi Y, Liang X, Dai F, Guan H, Sun J, Yao W.
    Int J Mol Sci; 2020 Jul 29; 21(15):. PubMed ID: 32751352
    [Abstract] [Full Text] [Related]

  • 10. Angiotensin II regulates the LARG/RhoA/MYPT1 axis in rat vascular smooth muscle in vitro.
    Chiu WC, Juang JM, Chang SN, Wu CK, Tsai CT, Tseng YZ, Chiang FT.
    Acta Pharmacol Sin; 2012 Dec 29; 33(12):1502-10. PubMed ID: 23123644
    [Abstract] [Full Text] [Related]

  • 11. Role of c-Src in the regulation of vascular contraction and Ca2+ signaling by angiotensin II in human vascular smooth muscle cells.
    Touyz RM, Wu XH, He G, Park JB, Chen X, Vacher J, Rajapurohitam V, Schiffrin EL.
    J Hypertens; 2001 Mar 29; 19(3):441-9. PubMed ID: 11288814
    [Abstract] [Full Text] [Related]

  • 12. RhoA activation in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats.
    Moriki N, Ito M, Seko T, Kureishi Y, Okamoto R, Nakakuki T, Kongo M, Isaka N, Kaibuchi K, Nakano T.
    Hypertens Res; 2004 Apr 29; 27(4):263-70. PubMed ID: 15127884
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. HDAC5 inhibition reduces angiotensin II-induced vascular contraction, hypertrophy, and oxidative stress in a mouse model.
    Bai L, Kee HJ, Choi SY, Seok YM, Kim GR, Kee SJ, Kook H, Jeong MH.
    Biomed Pharmacother; 2021 Feb 29; 134():111162. PubMed ID: 33360932
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Up-regulation of CPI-17 phosphorylation in diabetic vasculature and high glucose cultured vascular smooth muscle cells.
    Xie Z, Su W, Guo Z, Pang H, Post SR, Gong MC.
    Cardiovasc Res; 2006 Feb 01; 69(2):491-501. PubMed ID: 16336954
    [Abstract] [Full Text] [Related]

  • 20. DP1 (Prostaglandin D2 Receptor 1) Activation Protects Against Vascular Remodeling and Vascular Smooth Muscle Cell Transition to Myofibroblasts in Angiotensin II-Induced Hypertension in Mice.
    Zou F, Li Y, Zhang S, Zhang J.
    Hypertension; 2022 Jun 01; 79(6):1203-1215. PubMed ID: 35354317
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.