These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
184 related items for PubMed ID: 34997905
21. Aptasensor for amplified IgE sensing based on fluorescence quenching by graphene oxide. Hu K, Yang H, Zhou J, Zhao S, Tian J. Luminescence; 2013; 28(5):662-6. PubMed ID: 22949376 [Abstract] [Full Text] [Related]
22. Facile preparation of a collagen-graphene oxide composite: A sensitive and robust electrochemical aptasensor for determining dopamine in biological samples. Wei B, Zhong H, Wang L, Liu Y, Xu Y, Zhang J, Xu C, He L, Wang H. Int J Biol Macromol; 2019 Aug 15; 135():400-406. PubMed ID: 31129206 [Abstract] [Full Text] [Related]
23. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Chang H, Tang L, Wang Y, Jiang J, Li J. Anal Chem; 2010 Mar 15; 82(6):2341-6. PubMed ID: 20180560 [Abstract] [Full Text] [Related]
24. A novel "off-on" ratiometric fluorescent aptasensor for adenosine detection based on FRET between quantum dots and graphene oxide. Li P, Luo C, Chen X, Huang C. Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan 15; 305():123557. PubMed ID: 37866265 [Abstract] [Full Text] [Related]
25. Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Xing XJ, Liu XG, Yue-He, Luo QY, Tang HW, Pang DW. Biosens Bioelectron; 2012 Jan 15; 37(1):61-7. PubMed ID: 22613226 [Abstract] [Full Text] [Related]
26. Fluorometric determination of cardiac myoglobin based on energy transfer from a pyrene-labeled aptamer to graphene oxide. Liu D, Zeng Y, Zhou G, Lu X, Miao D, Yang Y, Zhai Y, Zhang J, Zhang Z, Wang H, Li L. Mikrochim Acta; 2019 Apr 15; 186(5):287. PubMed ID: 30989406 [Abstract] [Full Text] [Related]
27. Graphene oxide-mediated fluorescence turn-on GO-FAM-FRET aptasensor for detection of sterigmatocystin. Gade PS, Sonkar RM, Bhatt P. Anal Methods; 2022 Oct 13; 14(39):3890-3897. PubMed ID: 36165950 [Abstract] [Full Text] [Related]
28. Fluorometric dopamine assay based on an energy transfer system composed of aptamer-functionalized MoS2 quantum dots and MoS2 nanosheets. Chen J, Li Y, Huang Y, Zhang H, Chen X, Qiu H. Mikrochim Acta; 2019 Jan 07; 186(2):58. PubMed ID: 30617543 [Abstract] [Full Text] [Related]
29. Universal fluorometric aptasensor platform based on water-soluble conjugated polymers/graphene oxide. Guo L, Hu Y, Zhang Z, Tang Y. Anal Bioanal Chem; 2018 Jan 07; 410(1):287-295. PubMed ID: 29184991 [Abstract] [Full Text] [Related]
30. Ratiometric fluorescence resonance energy transfer aptasensor for highly sensitive and selective detection of Acinetobacter baumannii bacteria in urine sample using carbon dots as optical nanoprobes. Bahari D, Babamiri B, Salimi A, Salimizand H. Talanta; 2021 Jan 01; 221():121619. PubMed ID: 33076147 [Abstract] [Full Text] [Related]
31. Development of aflatoxin B1 aptasensor based on wide-range fluorescence detection using graphene oxide quencher. Joo M, Baek SH, Cheon SA, Chun HS, Choi SW, Park TJ. Colloids Surf B Biointerfaces; 2017 Jun 01; 154():27-32. PubMed ID: 28285035 [Abstract] [Full Text] [Related]
32. Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface. Ueno Y, Furukawa K, Matsuo K, Inoue S, Hayashi K, Hibino H. Chem Commun (Camb); 2013 Nov 14; 49(88):10346-8. PubMed ID: 23985796 [Abstract] [Full Text] [Related]
33. A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB. Liang J, Wei R, He S, Liu Y, Guo L, Li L. Analyst; 2013 Mar 21; 138(6):1726-32. PubMed ID: 23359871 [Abstract] [Full Text] [Related]
34. Fluorometric Aptasensor for Determination of Escherichia coli O157:H7 by FRET Effect between Aminated Carbon Quantum Dots and Graphene Oxide. Pan T, Shan X, Jiang D, Qi L, Wang W, Chen Z. Anal Sci; 2021 Jun 10; 37(6):833-838. PubMed ID: 33041308 [Abstract] [Full Text] [Related]
35. Recognition of chiral propranolol by fluorescent aptamerlight switch based on GO. Tan X, Zhang Y, Mao H, Yang J. Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan 15; 305():123436. PubMed ID: 37832446 [Abstract] [Full Text] [Related]
36. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Wang Y, Wei Z, Luo X, Wan Q, Qiu R, Wang S. Talanta; 2019 Apr 01; 195():33-39. PubMed ID: 30625551 [Abstract] [Full Text] [Related]
37. Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics. Zhang Y, Duan B, Bao Q, Yang T, Wei T, Wang J, Mao C, Zhang C, Yang M. J Mater Chem B; 2020 Sep 30; 8(37):8607-8613. PubMed ID: 32820795 [Abstract] [Full Text] [Related]
38. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification. Xiao K, Liu J, Chen H, Zhang S, Kong J. Biosens Bioelectron; 2017 May 15; 91():76-81. PubMed ID: 27992802 [Abstract] [Full Text] [Related]
39. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Jin H, Zhao C, Gui R, Gao X, Wang Z. Anal Chim Acta; 2018 Sep 26; 1025():154-162. PubMed ID: 29801604 [Abstract] [Full Text] [Related]
40. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection. Xu J, Shi M, Huang H, Hu K, Chen W, Huang Y, Zhao S. Analyst; 2018 Aug 06; 143(16):3918-3925. PubMed ID: 30043777 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]