These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
195 related items for PubMed ID: 35000386
1. Porous Ti3C2Tx MXene Membranes for Highly Efficient Salinity Gradient Energy Harvesting. Hong S, El-Demellawi JK, Lei Y, Liu Z, Marzooqi FA, Arafat HA, Alshareef HN. ACS Nano; 2022 Jan 25; 16(1):792-800. PubMed ID: 35000386 [Abstract] [Full Text] [Related]
2. Two-Dimensional Ti3C2Tx MXene Membranes as Nanofluidic Osmotic Power Generators. Hong S, Ming F, Shi Y, Li R, Kim IS, Tang CY, Alshareef HN, Wang P. ACS Nano; 2019 Aug 27; 13(8):8917-8925. PubMed ID: 31305989 [Abstract] [Full Text] [Related]
4. Horizontal Transport in Ti3C2Tx MXene for Highly Efficient Osmotic Energy Conversion from Saline-Alkali Environments. Qian H, Peng P, Fan H, Yang Z, Yang L, Zhou Y, Tan D, Yang F, Willatzen M, Amaratunga G, Wang Z, Wei D. Angew Chem Int Ed Engl; 2024 Nov 25; 63(48):e202414984. PubMed ID: 39147723 [Abstract] [Full Text] [Related]
5. Bioinspired Ti3 C2 Tx MXene-Based Ionic Diode Membrane for High-Efficient Osmotic Energy Conversion. Ding L, Zheng M, Xiao D, Zhao Z, Xue J, Zhang S, Caro J, Wang H. Angew Chem Int Ed Engl; 2022 Oct 10; 61(41):e202206152. PubMed ID: 35768337 [Abstract] [Full Text] [Related]
7. Two-Dimensional Membranes with Highly Charged Nanochannels for Osmotic Energy Conversion. Qian Y, Liu D, Yang G, Chen J, Ma Y, Wang L, Wang X, Lei W. ChemSusChem; 2022 Oct 10; 15(19):e202200933. PubMed ID: 35853838 [Abstract] [Full Text] [Related]
9. Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion. Fu W, Zhang J, Zhang Q, Ahmad M, Sun Z, Li Z, Zhu Y, Zhou Y, Wang S. Int J Biol Macromol; 2024 Feb 10; 257(Pt 1):128546. PubMed ID: 38061510 [Abstract] [Full Text] [Related]
10. High Strength MXene/PBONF Heterogeneous Membrane with Excellent Ion Selectivity for Efficient Osmotic Energy Conversion. Duan R, Zhou J, Ma X, Hao J, Zhao D, Teng C, Zhou Y, Jiang L. Nano Lett; 2023 Dec 13; 23(23):11043-11050. PubMed ID: 38032845 [Abstract] [Full Text] [Related]
11. Oppositely Charged Ti3 C2 Tx MXene Membranes with 2D Nanofluidic Channels for Osmotic Energy Harvesting. Ding L, Xiao D, Lu Z, Deng J, Wei Y, Caro J, Wang H. Angew Chem Int Ed Engl; 2020 May 25; 59(22):8720-8726. PubMed ID: 31950586 [Abstract] [Full Text] [Related]
14. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation. Jia P, Du X, Chen R, Zhou J, Agostini M, Sun J, Xiao L. Molecules; 2021 Sep 02; 26(17):. PubMed ID: 34500776 [Abstract] [Full Text] [Related]
15. Preanchoring Enabled Directional Modification of Atomically Thin Membrane for High-Performance Osmotic Energy Generation. Liu Y, Zhang S, Song R, Zeng H, Wang L. Nano Lett; 2024 Jan 10; 24(1):26-34. PubMed ID: 38117701 [Abstract] [Full Text] [Related]
16. Photothermoelectric Response of Ti3C2Tx MXene Confined Ion Channels. Hong S, Zou G, Kim H, Huang D, Wang P, Alshareef HN. ACS Nano; 2020 Jul 28; 14(7):9042-9049. PubMed ID: 32538614 [Abstract] [Full Text] [Related]
18. Unleashing the Power of Osmotic Energy: Metal Hydroxide-Organic Framework Membranes for Efficient Conversion. Zeng H, Yao C, Wu C, Wang D, Ma W, Wang J. Small; 2024 Jun 28; 20(26):e2310811. PubMed ID: 38299466 [Abstract] [Full Text] [Related]
19. Advances in Two-Dimensional Ion-Selective Membranes: Bridging Nanoscale Insights to Industrial-Scale Salinity Gradient Energy Harvesting. Ma X, Neek-Amal M, Sun C. ACS Nano; 2024 May 21; 18(20):12610-12638. PubMed ID: 38733357 [Abstract] [Full Text] [Related]
20. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis. Wang S, Sun Z, Ahmad M, Fu W, Gao Z. Int J Biol Macromol; 2023 Dec 31; 253(Pt 1):126608. PubMed ID: 37652325 [Abstract] [Full Text] [Related] Page: [Next] [New Search]