These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 35000386

  • 21. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion.
    Zhang Y, Wang H, Wang J, Li L, Sun H, Wang C.
    Chem Asian J; 2023 Dec 01; 18(23):e202300876. PubMed ID: 37886875
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J, Guo W, Feng D, Wang H, Zhao D, Jiang L.
    J Am Chem Soc; 2014 Sep 03; 136(35):12265-72. PubMed ID: 25137214
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Two-Dimensional Ti3C2Tx MXene/GO Hybrid Membranes for Highly Efficient Osmotic Power Generation.
    Gao H, Chen W, Xu C, Liu S, Tong X, Chen Y.
    Environ Sci Technol; 2020 Mar 03; 54(5):2931-2940. PubMed ID: 32048835
    [Abstract] [Full Text] [Related]

  • 28. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels.
    Lin YC, Chen HH, Chu CW, Yeh LH.
    Nano Lett; 2024 Sep 18; 24(37):11756-11762. PubMed ID: 39236070
    [Abstract] [Full Text] [Related]

  • 29. In Situ Growth of MOF-303 Membranes onto Porous Anodic Aluminum Oxide Substrates for Harvesting Salinity-Gradient Energy.
    Pan B, Wang J, Yao C, Zhang S, Wu R, Zeng H, Wang D, Wu C.
    ACS Appl Mater Interfaces; 2023 Dec 27; 15(51):59463-59474. PubMed ID: 38099706
    [Abstract] [Full Text] [Related]

  • 30. Nanofluidic osmotic power generators - advanced nanoporous membranes and nanochannels for blue energy harvesting.
    Laucirica G, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O.
    Chem Sci; 2021 Oct 13; 12(39):12874-12910. PubMed ID: 34745520
    [Abstract] [Full Text] [Related]

  • 31. Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure.
    Yang ZJ, Yeh LH, Peng YH, Chuang YP, Wu KC.
    Angew Chem Int Ed Engl; 2024 Aug 26; 63(35):e202408375. PubMed ID: 38847272
    [Abstract] [Full Text] [Related]

  • 32. Bio-inspired Double Angstrom-Scale Confinement in Ti-deficient Ti0.87 O2 Nanosheet Membranes for Ultrahigh-performance Osmotic Power Generation.
    Liu C, Ye C, Zhang T, Tang J, Mao K, Chen L, Xue L, Sun J, Zhang W, Wang X, Xiong P, Wang G, Zhu J.
    Angew Chem Int Ed Engl; 2024 Jan 22; 63(4):e202315947. PubMed ID: 38059770
    [Abstract] [Full Text] [Related]

  • 33. Enhanced Selective Ion Transport in Highly Charged Bacterial Cellulose/Boron Nitride Composite Membranes for Thermo-Osmotic Energy Harvesting.
    Jia X, Zhang M, Zhang Y, Fu Y, Sheng N, Chen S, Wang H, Du Y.
    Nano Lett; 2024 Feb 21; 24(7):2218-2225. PubMed ID: 38277614
    [Abstract] [Full Text] [Related]

  • 34. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting.
    Tong X, Liu S, Crittenden J, Chen Y.
    ACS Nano; 2021 Apr 27; 15(4):5838-5860. PubMed ID: 33844502
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Unipolar Ionic Diode Nanofluidic Membranes Enabled by Stepped Mesochannels for Enhanced Salinity Gradient Energy Harvesting.
    Yang Y, Zhou S, Lv Z, Hung CT, Zhao Z, Zhao T, Chao D, Kong B, Zhao D.
    J Am Chem Soc; 2024 Jul 17; 146(28):19580-19589. PubMed ID: 38977375
    [Abstract] [Full Text] [Related]

  • 37. Optimizing Nanofluidic Energy Harvesting in Synthetic Clay-based Membranes by Annealing Treatment.
    Zavala-Galindo Y, Yang G, Zang H, Lei W, Liu D.
    Adv Sci (Weinh); 2024 Aug 17; 11(31):e2400233. PubMed ID: 38885420
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.