These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


259 related items for PubMed ID: 35008025

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Study of the biochemical formation pathway of aroma compound 1-phenylethanol in tea (Camellia sinensis (L.) O. Kuntze) flowers and other plants.
    Zhou Y, Peng Q, Zeng L, Tang J, Li J, Dong F, Yang Z.
    Food Chem; 2018 Aug 30; 258():352-358. PubMed ID: 29655745
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry.
    Liao Y, Fu X, Zhou H, Rao W, Zeng L, Yang Z.
    Food Chem; 2019 Sep 15; 292():204-210. PubMed ID: 31054666
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area.
    Zeng L, Xiao Y, Zhou X, Yu J, Jian G, Li J, Chen J, Tang J, Yang Z.
    Food Chem; 2021 May 30; 345():128752. PubMed ID: 33302111
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Positive contributions of the stem to the formation of white tea quality-related metabolites during withering.
    Xiang L, Zhu C, Qian J, Zhou X, Wang M, Song Z, Chen C, Yu W, Chen L, Zeng L.
    Food Chem; 2024 Aug 15; 449():139173. PubMed ID: 38593722
    [Abstract] [Full Text] [Related]

  • 10. Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis).
    Zhou Y, Zeng L, Gui J, Liao Y, Li J, Tang J, Meng Q, Dong F, Yang Z.
    Food Res Int; 2017 Jun 15; 96():206-214. PubMed ID: 28528101
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment.
    Yu Z, Liao Y, Zeng L, Dong F, Watanabe N, Yang Z.
    Food Res Int; 2020 Mar 15; 129():108842. PubMed ID: 32036878
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Chromium in soil and tea (Camellia sinensis L.) infusion: Does soil amendment with municipal solid waste compost make sense?
    Karak T, Paul RK, Sonar I, Sanyal S, Ahmed KZ, Boruah RK, Das DK, Dutta AK.
    Food Res Int; 2014 Oct 15; 64():114-124. PubMed ID: 30011630
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Gibberellin Increases the Bud Yield and Theanine Accumulation in Camellia sinensis (L.) Kuntze.
    Li W, Xiang F, Su Y, Luo Z, Luo W, Zhou L, Liu H, Xiao L.
    Molecules; 2021 May 29; 26(11):. PubMed ID: 34072521
    [Abstract] [Full Text] [Related]

  • 20. An alternative pathway for the formation of aromatic aroma compounds derived from l-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves.
    Wang X, Zeng L, Liao Y, Zhou Y, Xu X, Dong F, Yang Z.
    Food Chem; 2019 Jan 01; 270():17-24. PubMed ID: 30174031
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.