These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 35033753

  • 1. A review on bacterial redox dependent iron transporters and their evolutionary relationship.
    Banerjee S, Chanakira MN, Hall J, Kerkan A, Dasgupta S, Martin DW.
    J Inorg Biochem; 2022 Apr; 229():111721. PubMed ID: 35033753
    [Abstract] [Full Text] [Related]

  • 2. EfeO-cupredoxins: major new members of the cupredoxin superfamily with roles in bacterial iron transport.
    Rajasekaran MB, Nilapwar S, Andrews SC, Watson KA.
    Biometals; 2010 Feb; 23(1):1-17. PubMed ID: 19701722
    [Abstract] [Full Text] [Related]

  • 3. EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7.
    Cao J, Woodhall MR, Alvarez J, Cartron ML, Andrews SC.
    Mol Microbiol; 2007 Aug; 65(4):857-75. PubMed ID: 17627767
    [Abstract] [Full Text] [Related]

  • 4. New insights into the mechanism of iron transport through the bacterial Ftr system present in pathogens.
    Steunou AS, Vigouroux A, Aumont-Nicaise M, Plancqueel S, Boussac A, Ouchane S, Moréra S.
    FEBS J; 2022 Oct; 289(20):6286-6307. PubMed ID: 35527501
    [Abstract] [Full Text] [Related]

  • 5. Crystal structures of EfeB and EfeO in a bacterial siderophore-independent iron transport system.
    Nakatsuji S, Okumura K, Takase R, Watanabe D, Mikami B, Hashimoto W.
    Biochem Biophys Res Commun; 2022 Feb 26; 594():124-130. PubMed ID: 35081501
    [Abstract] [Full Text] [Related]

  • 6. The yeast multicopper oxidase Fet3p and the iron permease Ftr1p physically interact.
    Bonaccorsi di Patti MC, Miele R, Eugenia Schininà M, Barra D.
    Biochem Biophys Res Commun; 2005 Jul 29; 333(2):432-7. PubMed ID: 15946650
    [Abstract] [Full Text] [Related]

  • 7. A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli.
    Grosse C, Scherer J, Koch D, Otto M, Taudte N, Grass G.
    Mol Microbiol; 2006 Oct 29; 62(1):120-31. PubMed ID: 16987175
    [Abstract] [Full Text] [Related]

  • 8. Conserved histidine residues at the ferroxidase centre of the Campylobacter jejuni Dps protein are not strictly required for metal binding and oxidation.
    Sanchuki HBS, Valdameri G, Moure VR, Rodriguez JA, Pedrosa FO, Souza EM, Korolik V, Ribeiro RR, Huergo LF.
    Microbiology (Reading); 2016 Jan 29; 162(1):156-163. PubMed ID: 26555736
    [Abstract] [Full Text] [Related]

  • 9. Site-directed mutagenesis of the yeast multicopper oxidase Fet3p.
    Askwith CC, Kaplan J.
    J Biol Chem; 1998 Aug 28; 273(35):22415-9. PubMed ID: 9712864
    [Abstract] [Full Text] [Related]

  • 10. Iron and pH-responsive FtrABCD ferrous iron utilization system of Bordetella species.
    Brickman TJ, Armstrong SK.
    Mol Microbiol; 2012 Nov 28; 86(3):580-93. PubMed ID: 22924881
    [Abstract] [Full Text] [Related]

  • 11. The iron/lead transporter superfamily of Fe/Pb2+ uptake systems.
    Debut AJ, Dumay QC, Barabote RD, Saier MH.
    J Mol Microbiol Biotechnol; 2006 Nov 28; 11(1-2):1-9. PubMed ID: 16825785
    [Abstract] [Full Text] [Related]

  • 12. Investigating the roles of the conserved Cu2+-binding residues on Brucella FtrA in producing conformational stability and functionality.
    Banerjee S, Garrigues RJ, Chanakira MN, Negron-Olivo JJ, Odeh YH, Spuches AM, Martin Roop R, Pitzer JE, Martin DW, Dasgupta S.
    J Inorg Biochem; 2020 Sep 28; 210():111162. PubMed ID: 32623149
    [Abstract] [Full Text] [Related]

  • 13. Crystal structure and metal binding properties of the periplasmic iron component EfeM from Pseudomonas syringae EfeUOB/M iron-transport system.
    Rajasekaran MB, Hussain R, Siligardi G, Andrews SC, Watson KA.
    Biometals; 2022 Jun 28; 35(3):573-589. PubMed ID: 35348940
    [Abstract] [Full Text] [Related]

  • 14. Targeted suppression of the ferroxidase and iron trafficking activities of the multicopper oxidase Fet3p from Saccharomyces cerevisiae.
    Wang TP, Quintanar L, Severance S, Solomon EI, Kosman DJ.
    J Biol Inorg Chem; 2003 Jul 28; 8(6):611-20. PubMed ID: 12684851
    [Abstract] [Full Text] [Related]

  • 15. Is the bacterial ferrous iron transporter FeoB a living fossil?
    Hantke K.
    Trends Microbiol; 2003 May 28; 11(5):192-5. PubMed ID: 12781516
    [Abstract] [Full Text] [Related]

  • 16. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin.
    De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, Kaplan J.
    EMBO J; 2007 Jun 20; 26(12):2823-31. PubMed ID: 17541408
    [Abstract] [Full Text] [Related]

  • 17. Analysis of the high-affinity iron uptake system at the Chlamydomonas reinhardtii plasma membrane.
    Terzulli A, Kosman DJ.
    Eukaryot Cell; 2010 May 20; 9(5):815-26. PubMed ID: 20348389
    [Abstract] [Full Text] [Related]

  • 18. Assembly, activation, and trafficking of the Fet3p.Ftr1p high affinity iron permease complex in Saccharomyces cerevisiae.
    Singh A, Severance S, Kaur N, Wiltsie W, Kosman DJ.
    J Biol Chem; 2006 May 12; 281(19):13355-13364. PubMed ID: 16522632
    [Abstract] [Full Text] [Related]

  • 19. The copper-iron connection in biology: structure of the metallo-oxidase Fet3p.
    Taylor AB, Stoj CS, Ziegler L, Kosman DJ, Hart PJ.
    Proc Natl Acad Sci U S A; 2005 Oct 25; 102(43):15459-64. PubMed ID: 16230618
    [Abstract] [Full Text] [Related]

  • 20. Redox-dependent structural changes in the Azotobacter vinelandii bacterioferritin: new insights into the ferroxidase and iron transport mechanism.
    Swartz L, Kuchinskas M, Li H, Poulos TL, Lanzilotta WN.
    Biochemistry; 2006 Apr 11; 45(14):4421-8. PubMed ID: 16584178
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.