These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
275 related items for PubMed ID: 35038441
1. A single-cell RNA-seq analysis of Brachyury-expressing cell clusters suggests a morphogenesis-associated signal center of oral ectoderm in sea urchin embryos. Satoh N, Hisata K, Foster S, Morita S, Nishitsuji K, Oulhen N, Tominaga H, Wessel GM. Dev Biol; 2022 Mar; 483():128-142. PubMed ID: 35038441 [Abstract] [Full Text] [Related]
2. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus. Gross JM, McClay DR. Dev Biol; 2001 Nov 01; 239(1):132-47. PubMed ID: 11784024 [Abstract] [Full Text] [Related]
3. Brachyury, Tbx2/3 and sall expression during embryogenesis of the indirectly developing polychaete Hydroides elegans. Arenas-Mena C. Int J Dev Biol; 2013 Nov 01; 57(1):73-83. PubMed ID: 23585355 [Abstract] [Full Text] [Related]
5. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo. Ransick A, Davidson EH. Dev Biol; 1998 Mar 01; 195(1):38-48. PubMed ID: 9520322 [Abstract] [Full Text] [Related]
6. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans. Bergeron KF, Xu X, Brandhorst BP. Mech Dev; 2011 Mar 01; 128(1-2):71-89. PubMed ID: 21056656 [Abstract] [Full Text] [Related]
7. brachyury Target genes in the early sea urchin embryo isolated by differential macroarray screening. Rast JP, Cameron RA, Poustka AJ, Davidson EH. Dev Biol; 2002 Jun 01; 246(1):191-208. PubMed ID: 12027442 [Abstract] [Full Text] [Related]
8. The Mesoderm-Forming Gene brachyury Regulates Ectoderm-Endoderm Demarcation in the Coral Acropora digitifera. Yasuoka Y, Shinzato C, Satoh N. Curr Biol; 2016 Nov 07; 26(21):2885-2892. PubMed ID: 27693135 [Abstract] [Full Text] [Related]
9. Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment. Agca C, Klein WH, Venuti JM. Mech Dev; 2009 Nov 07; 126(5-6):430-42. PubMed ID: 19368800 [Abstract] [Full Text] [Related]
10. Pattern of Brachyury gene expression in starfish embryos resembles that of hemichordate embryos but not of sea urchin embryos. Shoguchi E, Satoh N, Maruyama YK. Mech Dev; 1999 Apr 07; 82(1-2):185-9. PubMed ID: 10354483 [Abstract] [Full Text] [Related]
11. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Duboc V, Röttinger E, Besnardeau L, Lepage T. Dev Cell; 2004 Mar 07; 6(3):397-410. PubMed ID: 15030762 [Abstract] [Full Text] [Related]
12. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo. Wikramanayake AH, Klein WH. Development; 1997 Jan 07; 124(1):13-20. PubMed ID: 9006063 [Abstract] [Full Text] [Related]
13. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks. Amore G, Yavrouian RG, Peterson KJ, Ransick A, McClay DR, Davidson EH. Dev Biol; 2003 Sep 01; 261(1):55-81. PubMed ID: 12941621 [Abstract] [Full Text] [Related]
14. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Röttinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, Lepage T. Development; 2008 Jan 01; 135(2):353-65. PubMed ID: 18077587 [Abstract] [Full Text] [Related]
15. The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network. Chen JH, Luo YJ, Su YH. Dev Dyn; 2011 Jan 01; 240(1):250-60. PubMed ID: 21181943 [Abstract] [Full Text] [Related]
16. T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo. Fuchikami T, Mitsunaga-Nakatsubo K, Amemiya S, Hosomi T, Watanabe T, Kurokawa D, Kataoka M, Harada Y, Satoh N, Kusunoki S, Takata K, Shimotori T, Yamamoto T, Sakamoto N, Shimada H, Akasaka K. Development; 2002 Nov 01; 129(22):5205-16. PubMed ID: 12399312 [Abstract] [Full Text] [Related]
17. The organizer in evolution-gastrulation and organizer gene expression highlight the importance of Brachyury during development of the coral, Acropora millepora. Hayward DC, Grasso LC, Saint R, Miller DJ, Ball EE. Dev Biol; 2015 Mar 15; 399(2):337-47. PubMed ID: 25601451 [Abstract] [Full Text] [Related]
18. Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo. Yuh CH, Davidson EH. Development; 1996 Apr 15; 122(4):1069-82. PubMed ID: 8620834 [Abstract] [Full Text] [Related]
19. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes. Duboc V, Lepage T. J Exp Zool B Mol Dev Evol; 2008 Jan 15; 310(1):41-53. PubMed ID: 16838294 [Abstract] [Full Text] [Related]
20. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus. Tsironis I, Paganos P, Gouvi G, Tsimpos P, Stamopoulou A, Arnone MI, Flytzanis CN. Dev Biol; 2021 Jul 15; 475():131-144. PubMed ID: 33484706 [Abstract] [Full Text] [Related] Page: [Next] [New Search]