These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
275 related items for PubMed ID: 35038441
21. New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN. Li E, Materna SC, Davidson EH. Dev Biol; 2013 Oct 01; 382(1):268-79. PubMed ID: 23933172 [Abstract] [Full Text] [Related]
23. Cas9-mediated excision of Nematostella brachyury disrupts endoderm development, pharynx formation and oral-aboral patterning. Servetnick MD, Steinworth B, Babonis LS, Simmons D, Salinas-Saavedra M, Martindale MQ. Development; 2017 Aug 15; 144(16):2951-2960. PubMed ID: 28705897 [Abstract] [Full Text] [Related]
24. Highly restricted expression at the ectoderm-endoderm boundary of PIHbox 9, a sea urchin homeobox gene related to the human HB9 gene. Bellomonte D, Di Bernardo M, Russo R, Caronia G, Spinelli G. Mech Dev; 1998 Jun 15; 74(1-2):185-8. PubMed ID: 9651524 [Abstract] [Full Text] [Related]
25. Molecular heterotopy in the expression of Brachyury orthologs in order Clypeasteroida (irregular sea urchins) and order Echinoida (regular sea urchins). Hibino T, Harada Y, Minokawa T, Nonaka M, Amemiya S. Dev Genes Evol; 2004 Nov 15; 214(11):546-58. PubMed ID: 15372237 [Abstract] [Full Text] [Related]
26. Hbox1 and Hbox7 are involved in pattern formation in sea urchin embryos. Ishii M, Mitsunaga-Nakatsubo K, Kitajima T, Kusunoki S, Shimada H, Akasaka K. Dev Growth Differ; 1999 Jun 15; 41(3):241-52. PubMed ID: 10400386 [Abstract] [Full Text] [Related]
27. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation. Duboc V, Lapraz F, Besnardeau L, Lepage T. Dev Biol; 2008 Aug 01; 320(1):49-59. PubMed ID: 18582858 [Abstract] [Full Text] [Related]
32. Oral-aboral ectoderm differentiation of sea urchin embryos is disrupted in response to calcium ionophore. Akasaka K, Uemoto H, Wilt F, Mitsunaga-Nakatsubo K, Shimada H. Dev Growth Differ; 1997 Jun 01; 39(3):373-9. PubMed ID: 9227904 [Abstract] [Full Text] [Related]
33. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Wikramanayake AH, Peterson R, Chen J, Huang L, Bince JM, McClay DR, Klein WH. Genesis; 2004 Jul 01; 39(3):194-205. PubMed ID: 15282746 [Abstract] [Full Text] [Related]
34. Functional characterization of Ets-binding sites in the sea urchin embryo: three base pair conversions redirect expression from mesoderm to ectoderm and endoderm. Consales C, Arnone MI. Gene; 2002 Apr 03; 287(1-2):75-81. PubMed ID: 11992725 [Abstract] [Full Text] [Related]
35. Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2. Hardin J, Coffman JA, Black SD, McClay DR. Development; 1992 Nov 03; 116(3):671-85. PubMed ID: 1289059 [Abstract] [Full Text] [Related]
36. New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus. Martik ML, McClay DR. Mech Dev; 2017 Dec 03; 148():3-10. PubMed ID: 28684256 [Abstract] [Full Text] [Related]
38. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo. Hardin J, Armstrong N. Dev Biol; 1997 Feb 01; 182(1):134-49. PubMed ID: 9073456 [Abstract] [Full Text] [Related]
40. Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo. Miller RN, Dalamagas DG, Kingsley PD, Ettensohn CA. Mech Dev; 1996 Nov 01; 60(1):3-12. PubMed ID: 9025057 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]