These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Evolution of morphology of bacterial cellulose scaffolds during early culture. Luo H, Zhang J, Xiong G, Wan Y. Carbohydr Polym; 2014 Oct 13; 111():722-8. PubMed ID: 25037408 [Abstract] [Full Text] [Related]
25. Bone-Inspired Mineralization with Highly Aligned Cellulose Nanofibers as Template. Cheng Z, Ye Z, Natan A, Ma Y, Li H, Chen Y, Wan L, Aparicio C, Zhu H. ACS Appl Mater Interfaces; 2019 Nov 13; 11(45):42486-42495. PubMed ID: 31638768 [Abstract] [Full Text] [Related]
26. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Stumpf TR, Yang X, Zhang J, Cao X. Mater Sci Eng C Mater Biol Appl; 2018 Jan 01; 82():372-383. PubMed ID: 29025671 [Abstract] [Full Text] [Related]
27. Biomimetic nanocomposite based on hydroxyapatite mineralization over chemically modified cellulose nanowhiskers: An active platform for osteoblast proliferation. Fragal EH, Cellet TSP, Fragal VH, Witt MA, Companhoni MVP, Ueda-Nakamura T, Silva R, Rubira AF. Int J Biol Macromol; 2019 Mar 15; 125():133-142. PubMed ID: 30529209 [Abstract] [Full Text] [Related]
28. Surface controlled calcium phosphate formation on three-dimensional bacterial cellulose-based nanofibers. Luo H, Xiong G, Zhang C, Li D, Zhu Y, Guo R, Wan Y. Mater Sci Eng C Mater Biol Appl; 2015 Apr 15; 49():526-533. PubMed ID: 25686980 [Abstract] [Full Text] [Related]
31. Novel composite scaffolds based on alginate and Mg-doped calcium phosphate fillers: Enhanced hydroxyapatite formation under biomimetic conditions. Stojkovska J, Zvicer J, Andrejevic M, Janackovic D, Obradovic B, Veljovic DN. J Biomed Mater Res B Appl Biomater; 2021 Dec 15; 109(12):2079-2090. PubMed ID: 33955159 [Abstract] [Full Text] [Related]
32. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. Abouzeid RE, Khiari R, Salama A, Diab M, Beneventi D, Dufresne A. Int J Biol Macromol; 2020 Oct 01; 160():538-547. PubMed ID: 32470581 [Abstract] [Full Text] [Related]
34. In vitro degradability and bioactivity of oxidized bacterial cellulose-hydroxyapatite composites. Luz EPCG, Chaves PHS, Vieira LAP, Ribeiro SF, Borges MF, Andrade FK, Muniz CR, Infantes-Molina A, Rodríguez-Castellón E, Rosa MF, Vieira RS. Carbohydr Polym; 2020 Jun 01; 237():116174. PubMed ID: 32241452 [Abstract] [Full Text] [Related]
35. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering. Luo Y, Lode A, Wu C, Chang J, Gelinsky M. ACS Appl Mater Interfaces; 2015 Apr 01; 7(12):6541-9. PubMed ID: 25761464 [Abstract] [Full Text] [Related]
38. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Katti KS, Katti DR, Dash R. Biomed Mater; 2008 Sep 01; 3(3):034122. PubMed ID: 18765898 [Abstract] [Full Text] [Related]
39. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D, Gallego Ferrer G, Ivankovic M, Ivankovic H. Mater Sci Eng C Mater Biol Appl; 2014 Jan 01; 34():437-45. PubMed ID: 24268280 [Abstract] [Full Text] [Related]