These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


300 related items for PubMed ID: 35075236

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Early Expression of Tet1 and Tet2 in Mouse Zygotes Altered DNA Methylation Status and Affected Embryonic Development.
    Qi Q, Wang Q, Liu K, Bian J, Yu Z, Hou J.
    Int J Mol Sci; 2022 Jul 31; 23(15):. PubMed ID: 35955629
    [Abstract] [Full Text] [Related]

  • 3. Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells.
    Putiri EL, Tiedemann RL, Thompson JJ, Liu C, Ho T, Choi JH, Robertson KD.
    Genome Biol; 2014 Jun 23; 15(6):R81. PubMed ID: 24958354
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. TET2-Mediated Spatiotemporal Changes of 5-Hydroxymethylcytosine During Organogenesis in the Late Mouse Fetus.
    Li X, Xie F, Jin J, Wu Y, Luo Z, Zhang F, Zhang S, Chen D, Liu A.
    Anat Rec (Hoboken); 2019 Jun 23; 302(6):954-963. PubMed ID: 30369084
    [Abstract] [Full Text] [Related]

  • 6. Substrate DNA length regulates the activity of TET 5-methylcytosine dioxygenases.
    Bhattacharya C, Dey AS, Mukherji M.
    Cell Biochem Funct; 2023 Aug 23; 41(6):704-712. PubMed ID: 37349892
    [Abstract] [Full Text] [Related]

  • 7. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA.
    Hashimoto H, Pais JE, Zhang X, Saleh L, Fu ZQ, Dai N, Corrêa IR, Zheng Y, Cheng X.
    Nature; 2014 Feb 20; 506(7488):391-5. PubMed ID: 24390346
    [Abstract] [Full Text] [Related]

  • 8. MYC deregulates TET1 and TET2 expression to control global DNA (hydroxy)methylation and gene expression to maintain a neoplastic phenotype in T-ALL.
    Poole CJ, Lodh A, Choi JH, van Riggelen J.
    Epigenetics Chromatin; 2019 Jul 02; 12(1):41. PubMed ID: 31266538
    [Abstract] [Full Text] [Related]

  • 9. Structural insight into substrate preference for TET-mediated oxidation.
    Hu L, Lu J, Cheng J, Rao Q, Li Z, Hou H, Lou Z, Zhang L, Li W, Gong W, Liu M, Sun C, Yin X, Li J, Tan X, Wang P, Wang Y, Fang D, Cui Q, Yang P, He C, Jiang H, Luo C, Xu Y.
    Nature; 2015 Nov 05; 527(7576):118-22. PubMed ID: 26524525
    [Abstract] [Full Text] [Related]

  • 10. TET proteins and 5-methylcytosine oxidation in hematological cancers.
    Ko M, An J, Pastor WA, Koralov SB, Rajewsky K, Rao A.
    Immunol Rev; 2015 Jan 05; 263(1):6-21. PubMed ID: 25510268
    [Abstract] [Full Text] [Related]

  • 11. Comparative dynamics of 5-methylcytosine reprogramming and TET family expression during preimplantation mammalian development in mouse and sheep.
    Jafarpour F, Hosseini SM, Ostadhosseini S, Abbasi H, Dalman A, Nasr-Esfahani MH.
    Theriogenology; 2017 Feb 05; 89():86-96. PubMed ID: 28043375
    [Abstract] [Full Text] [Related]

  • 12. TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer.
    Lio CJ, Shukla V, Samaniego-Castruita D, González-Avalos E, Chakraborty A, Yue X, Schatz DG, Ay F, Rao A.
    Sci Immunol; 2019 Apr 26; 4(34):. PubMed ID: 31028100
    [Abstract] [Full Text] [Related]

  • 13. Development of a rapid mass spectrometric method for the analysis of ten-eleven translocation enzymes.
    Graves C, Islam K.
    Methods Enzymol; 2024 Apr 26; 703():87-120. PubMed ID: 39261005
    [Abstract] [Full Text] [Related]

  • 14. Ten-eleven translocation 2 modulates allergic inflammation by 5-hydroxymethylcytosine remodeling of immunologic pathways.
    Meng C, Gu L, Li Y, Li R, Cao Y, Li Z, Allen EG, Zhu D, Jin P.
    Hum Mol Genet; 2021 Oct 13; 30(21):1985-1995. PubMed ID: 34165552
    [Abstract] [Full Text] [Related]

  • 15. Tet family of 5-methylcytosine dioxygenases in mammalian development.
    Zhao H, Chen T.
    J Hum Genet; 2013 Jul 13; 58(7):421-7. PubMed ID: 23719188
    [Abstract] [Full Text] [Related]

  • 16. Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells.
    Huang Y, Chavez L, Chang X, Wang X, Pastor WA, Kang J, Zepeda-Martínez JA, Pape UJ, Jacobsen SE, Peters B, Rao A.
    Proc Natl Acad Sci U S A; 2014 Jan 28; 111(4):1361-6. PubMed ID: 24474761
    [Abstract] [Full Text] [Related]

  • 17. Hyperglycemia affects global 5-methylcytosine and 5-hydroxymethylcytosine in blood genomic DNA through upregulation of SIRT6 and TETs.
    Yuan EF, Yang Y, Cheng L, Deng X, Chen SM, Zhou X, Liu SM.
    Clin Epigenetics; 2019 Apr 15; 11(1):63. PubMed ID: 30987683
    [Abstract] [Full Text] [Related]

  • 18. TET2 regulates extranodal NK/T cell lymphoma progression through regulation of DNA methylation.
    Xiang C, Gao L, Tao Q, Chen Z, Zhao S, Liu W.
    Hematol Oncol; 2024 Jul 15; 42(4):e3295. PubMed ID: 38979860
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification.
    Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y.
    Nature; 2010 Aug 26; 466(7310):1129-33. PubMed ID: 20639862
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.