These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


297 related items for PubMed ID: 35090075

  • 1. Climatic and stand drivers of forest resistance to recent bark beetle disturbance in European coniferous forests.
    Jaime L, Batllori E, Ferretti M, Lloret F.
    Glob Chang Biol; 2022 Apr; 28(8):2830-2841. PubMed ID: 35090075
    [Abstract] [Full Text] [Related]

  • 2. Historical and event-based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation.
    Lloret F, Kitzberger T.
    Glob Chang Biol; 2018 May; 24(5):1952-1964. PubMed ID: 29316042
    [Abstract] [Full Text] [Related]

  • 3. Recent bark beetle outbreaks influence wildfire severity in mixed-conifer forests of the Sierra Nevada, California, USA.
    Wayman RB, Safford HD.
    Ecol Appl; 2021 Apr; 31(3):e02287. PubMed ID: 33426715
    [Abstract] [Full Text] [Related]

  • 4. Few generalizable patterns of tree-level mortality during extreme drought and concurrent bark beetle outbreaks.
    Reed CC, Hood SM.
    Sci Total Environ; 2021 Jan 01; 750():141306. PubMed ID: 32846245
    [Abstract] [Full Text] [Related]

  • 5. A dynamical model for bark beetle outbreaks.
    Křivan V, Lewis M, Bentz BJ, Bewick S, Lenhart SM, Liebhold A.
    J Theor Biol; 2016 Oct 21; 407():25-37. PubMed ID: 27396358
    [Abstract] [Full Text] [Related]

  • 6. Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA.
    Restaino C, Young DJN, Estes B, Gross S, Wuenschel A, Meyer M, Safford H.
    Ecol Appl; 2019 Jun 21; 29(4):e01902. PubMed ID: 31020735
    [Abstract] [Full Text] [Related]

  • 7. Low-severity fire increases tree defense against bark beetle attacks.
    Hood S, Sala A, Heyerdahl EK, Boutin M.
    Ecology; 2015 Jul 21; 96(7):1846-55. PubMed ID: 26378307
    [Abstract] [Full Text] [Related]

  • 8. Does the legacy of historical thinning treatments foster resilience to bark beetle outbreaks in subalpine forests?
    Morris JE, Buonanduci MS, Agne MC, Battaglia MA, Harvey BJ.
    Ecol Appl; 2022 Jan 21; 32(1):e02474. PubMed ID: 34653267
    [Abstract] [Full Text] [Related]

  • 9. Patterns of early post-disturbance reorganization in Central European forests.
    Seidl R, Potterf M, Müller J, Turner MG, Rammer W.
    Proc Biol Sci; 2024 Sep 21; 291(2031):20240625. PubMed ID: 39317320
    [Abstract] [Full Text] [Related]

  • 10. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles.
    Wong CM, Daniels LD.
    Glob Chang Biol; 2017 May 21; 23(5):1926-1941. PubMed ID: 27901296
    [Abstract] [Full Text] [Related]

  • 11. Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California.
    Robbins ZJ, Xu C, Aukema BH, Buotte PC, Chitra-Tarak R, Fettig CJ, Goulden ML, Goodsman DW, Hall AD, Koven CD, Kueppers LM, Madakumbura GD, Mortenson LA, Powell JA, Scheller RM.
    Glob Chang Biol; 2022 Jan 21; 28(2):509-523. PubMed ID: 34713535
    [Abstract] [Full Text] [Related]

  • 12. Linking increasing drought stress to Scots pine mortality and bark beetle infestations.
    Dobbertin M, Wermelinger B, Bigler C, Bürgi M, Carron M, Forster B, Gimmi U, Rigling A.
    ScientificWorldJournal; 2007 Mar 21; 7 Suppl 1():231-9. PubMed ID: 17450301
    [Abstract] [Full Text] [Related]

  • 13. Contrasting vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance: The role of management.
    Dobor L, Hlásny T, Zimová S.
    Ecol Evol; 2020 Nov 21; 10(21):12233-12245. PubMed ID: 33209284
    [Abstract] [Full Text] [Related]

  • 14. Climate-driven tree growth and mortality in the Black Forest, Germany-Long-term observations.
    Spiecker H, Kahle HP.
    Glob Chang Biol; 2023 Oct 21; 29(20):5908-5923. PubMed ID: 37551846
    [Abstract] [Full Text] [Related]

  • 15. Abundance of Dendroctonus frontalis and D. mexicanus (Coleoptera: Scolytinae) along altitudinal transects in Mexico: Implications of climatic change for forest conservation.
    Sáenz-Romero C, Cambrón-Sandoval VH, Hammond W, Méndez-González J, Luna-Soria H, Macías-Sámano JE, Gómez-Romero M, Trejo-Ramírez O, Allen CD, Gómez-Pineda E, Del-Val E.
    PLoS One; 2023 Oct 21; 18(7):e0288067. PubMed ID: 37405993
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Spruce beetle outbreak was not driven by drought stress: Evidence from a tree-ring iso-demographic approach indicates temperatures were more important.
    Pettit JM, Voelker SL, DeRose RJ, Burton JI.
    Glob Chang Biol; 2020 Oct 21; 26(10):5829-5843. PubMed ID: 32654317
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience.
    Hood SM, Baker S, Sala A.
    Ecol Appl; 2016 Oct 21; 26(7):1984-2000. PubMed ID: 27755724
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.