These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
207 related items for PubMed ID: 35094149
21. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Ochsner UA, Reiser J. Proc Natl Acad Sci U S A; 1995 Jul 03; 92(14):6424-8. PubMed ID: 7604006 [Abstract] [Full Text] [Related]
22. Analysis of two quorum sensing-deficient isolates of Pseudomonas aeruginosa. Lee DJ, Jo AR, Jang MC, Nam J, Choi HJ, Choi GW, Sung HY, Bae H, Ku YG, Chi YT. Microb Pathog; 2018 Jun 03; 119():162-169. PubMed ID: 29635051 [Abstract] [Full Text] [Related]
23. Foraging Signals Promote Swarming in Starving Pseudomonas aeruginosa. Badal D, Jayarani AV, Kollaran MA, Prakash D, P M, Singh V. mBio; 2021 Oct 26; 12(5):e0203321. PubMed ID: 34607460 [Abstract] [Full Text] [Related]
24. Specific maltose derivatives modulate the swarming motility of nonswarming mutant and inhibit bacterial adhesion and biofilm formation by Pseudomonas aeruginosa. Shetye GS, Singh N, Jia C, Nguyen CD, Wang G, Luk YY. Chembiochem; 2014 Jul 07; 15(10):1514-23. PubMed ID: 24944053 [Abstract] [Full Text] [Related]
25. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM. Microb Cell Fact; 2011 Oct 17; 10():80. PubMed ID: 21999513 [Abstract] [Full Text] [Related]
26. PqsR-independent quorum-sensing response of Pseudomonas aeruginosa ATCC 9027 outlier-strain reveals new insights on the PqsE effect on RhlR activity. García-Reyes S, Cocotl-Yañez M, Soto-Aceves MP, González-Valdez A, Servín-González L, Soberón-Chávez G. Mol Microbiol; 2021 Oct 17; 116(4):1113-1123. PubMed ID: 34418194 [Abstract] [Full Text] [Related]
27. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. Zhu K, Rock CO. J Bacteriol; 2008 May 17; 190(9):3147-54. PubMed ID: 18326581 [Abstract] [Full Text] [Related]
28. Identification and characterisation of short chain rhamnolipid production in a previously uninvestigated, non-pathogenic marine pseudomonad. Twigg MS, Tripathi L, Zompra A, Salek K, Irorere VU, Gutierrez T, Spyroulias GA, Marchant R, Banat IM. Appl Microbiol Biotechnol; 2018 Oct 17; 102(19):8537-8549. PubMed ID: 29992435 [Abstract] [Full Text] [Related]
29. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. Dubeau D, Déziel E, Woods DE, Lépine F. BMC Microbiol; 2009 Dec 17; 9():263. PubMed ID: 20017946 [Abstract] [Full Text] [Related]
30. The Small RNAs PA2952.1 and PrrH as Regulators of Virulence, Motility, and Iron Metabolism in Pseudomonas aeruginosa. Coleman SR, Bains M, Smith ML, Spicer V, Lao Y, Taylor PK, Mookherjee N, Hancock REW. Appl Environ Microbiol; 2021 Jan 15; 87(3):. PubMed ID: 33158897 [Abstract] [Full Text] [Related]
32. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Grosso-Becerra MV, González-Valdez A, Granados-Martínez MJ, Morales E, Servín-González L, Méndez JL, Delgado G, Morales-Espinosa R, Ponce-Soto GY, Cocotl-Yañez M, Soberón-Chávez G. Appl Microbiol Biotechnol; 2016 Dec 15; 100(23):9995-10004. PubMed ID: 27566690 [Abstract] [Full Text] [Related]
33. Expression of genes involved in rhamnolipid synthesis in Pseudomonas aeruginosa PAO1 in a bioreactor cultivation. Schmidberger A, Henkel M, Hausmann R, Schwartz T. Appl Microbiol Biotechnol; 2013 Jul 15; 97(13):5779-91. PubMed ID: 23636691 [Abstract] [Full Text] [Related]
34. NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence. Wenner N, Maes A, Cotado-Sampayo M, Lapouge K. Environ Microbiol; 2014 Apr 15; 16(4):1053-68. PubMed ID: 24308329 [Abstract] [Full Text] [Related]
35. The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Pham TH, Webb JS, Rehm BH. Microbiology (Reading); 2004 Oct 15; 150(Pt 10):3405-13. PubMed ID: 15470118 [Abstract] [Full Text] [Related]
37. Influence of ferric iron on gene expression and rhamnolipid synthesis during batch cultivation of Pseudomonas aeruginosa PAO1. Schmidberger A, Henkel M, Hausmann R, Schwartz T. Appl Microbiol Biotechnol; 2014 Aug 15; 98(15):6725-37. PubMed ID: 24752844 [Abstract] [Full Text] [Related]
38. Exploiting the Natural Diversity of RhlA Acyltransferases for the Synthesis of the Rhamnolipid Precursor 3-(3-Hydroxyalkanoyloxy)Alkanoic Acid. Germer A, Tiso T, Müller C, Behrens B, Vosse C, Scholz K, Froning M, Hayen H, Blank LM. Appl Environ Microbiol; 2020 Mar 02; 86(6):. PubMed ID: 31924623 [Abstract] [Full Text] [Related]
39. Enhanced rhamnolipids production in Pseudomonas aeruginosa SG by selectively blocking metabolic bypasses of glycosyl and fatty acid precursors. Lei L, Zhao F, Han S, Zhang Y. Biotechnol Lett; 2020 Jun 02; 42(6):997-1002. PubMed ID: 32060764 [Abstract] [Full Text] [Related]
40. Sulfated vizantin suppresses mucin layer penetration dependent on the flagella motility of Pseudomonas aeruginosa PAO1. Hayashi N, Furue Y, Kai D, Yamada N, Yamamoto H, Nakano T, Oda M. PLoS One; 2018 Jun 02; 13(11):e0206696. PubMed ID: 30383847 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]