These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
284 related items for PubMed ID: 35099134
1. Assessment of Image Quality of Coronary Computed Tomography Angiography in Obese Patients by Comparing Deep Learning Image Reconstruction With Adaptive Statistical Iterative Reconstruction Veo. Wang H, Wang R, Li Y, Zhou Z, Gao Y, Bo K, Yu M, Sun Z, Xu L. J Comput Assist Tomogr; ; 46(1):34-40. PubMed ID: 35099134 [Abstract] [Full Text] [Related]
7. Impact of deep learning-based image reconstruction on image quality compared with adaptive statistical iterative reconstruction-Veo in renal and adrenal computed tomography. Bie Y, Yang S, Li X, Zhao K, Zhang C, Zhong H. J Xray Sci Technol; 2022 Apr; 30(3):409-418. PubMed ID: 35124575 [Abstract] [Full Text] [Related]
8. Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise. Kim JH, Yoon HJ, Lee E, Kim I, Cha YK, Bak SH. Korean J Radiol; 2021 Jan; 22(1):131-138. PubMed ID: 32729277 [Abstract] [Full Text] [Related]
9. Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography. De Santis D, Polidori T, Tremamunno G, Rucci C, Piccinni G, Zerunian M, Pugliese L, Del Gaudio A, Guido G, Barbato L, Laghi A, Caruso D. Radiol Med; 2023 Apr; 128(4):434-444. PubMed ID: 36847992 [Abstract] [Full Text] [Related]
11. Deep learning reconstruction for contrast-enhanced CT of the upper abdomen: similar image quality with lower radiation dose in direct comparison with iterative reconstruction. Nam JG, Hong JH, Kim DS, Oh J, Goo JM. Eur Radiol; 2021 Aug; 31(8):5533-5543. PubMed ID: 33555354 [Abstract] [Full Text] [Related]
13. Reducing both radiation and contrast doses for overweight patients in coronary CT angiography with 80-kVp and deep learning image reconstruction. Li W, Lu H, Wen Y, Zhou M, Shuai T, You Y, Zhao J, Liao K, Lu C, Li J, Li Z, Diao K, He Y. Eur J Radiol; 2023 Apr; 161():110736. PubMed ID: 36804314 [Abstract] [Full Text] [Related]
14. Application of deep learning image reconstruction in low-dose chest CT scan. Wang H, Li LL, Shang J, Song J, Liu B. Br J Radiol; 2022 May 01; 95(1133):20210380. PubMed ID: 35084210 [Abstract] [Full Text] [Related]
15. Deep learning-based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V). Kim I, Kang H, Yoon HJ, Chung BM, Shin NY. Neuroradiology; 2021 Jun 01; 63(6):905-912. PubMed ID: 33037503 [Abstract] [Full Text] [Related]
16. Clinical value of deep learning image reconstruction on the diagnosis of pulmonary nodule for ultra-low-dose chest CT imaging. Zheng Z, Ai Z, Liang Y, Li Y, Wu Z, Wu M, Han Q, Ma K, Xiang Z. Clin Radiol; 2024 Aug 01; 79(8):628-636. PubMed ID: 38749827 [Abstract] [Full Text] [Related]
18. Application of deep learning image reconstruction algorithm to improve image quality in CT angiography of children with Takayasu arteritis. Sun J, Li H, Li H, Li M, Gao Y, Zhou Z, Peng Y. J Xray Sci Technol; 2022 Aug 01; 30(1):177-184. PubMed ID: 34806646 [Abstract] [Full Text] [Related]