These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 35100282
1. Wide distribution of resistance to the fungicides fludioxonil and iprodione in Penicillium species. Oiki S, Yaguchi T, Urayama SI, Hagiwara D. PLoS One; 2022; 17(1):e0262521. PubMed ID: 35100282 [Abstract] [Full Text] [Related]
2. Sensitivity of Penicillium expansum field isolates to tebuconazole, iprodione, fludioxonil and cyprodinil and characterization of fitness parameters and patulin production. Karaoglanidis GS, Markoglou AN, Bardas GA, Doukas EG, Konstantinou S, Kalampokis JF. Int J Food Microbiol; 2011 Jan 31; 145(1):195-204. PubMed ID: 21251724 [Abstract] [Full Text] [Related]
3. Characterization of genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in field isolates of Penicillium digitatum. Kanetis L, Förster H, Jones CA, Borkovich KA, Adaskaveg JE. Phytopathology; 2008 Feb 31; 98(2):205-14. PubMed ID: 18943197 [Abstract] [Full Text] [Related]
4. Binding Mode and Molecular Mechanism of the Two-Component Histidine Kinase Bos1 of Botrytis cinerea to Fludioxonil and Iprodione. Yin X, Li P, Wang Z, Wang J, Fang A, Tian B, Yang Y, Yu Y, Bi C. Phytopathology; 2024 Apr 31; 114(4):770-779. PubMed ID: 38598410 [Abstract] [Full Text] [Related]
5. Characterization of the NikA histidine kinase implicated in the phosphorelay signal transduction of Aspergillus nidulans, with special reference to fungicide responses. Hagiwara D, Matsubayashi Y, Marui J, Furukawa K, Yamashino T, Kanamaru K, Kato M, Abe K, Kobayashi T, Mizuno T. Biosci Biotechnol Biochem; 2007 Mar 31; 71(3):844-7. PubMed ID: 17341812 [Abstract] [Full Text] [Related]
6. Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans. Ochiai N, Fujimura M, Oshima M, Motoyama T, Ichiishi A, Yamada-Okabe H, Yamaguchi I. Biosci Biotechnol Biochem; 2002 Oct 31; 66(10):2209-15. PubMed ID: 12450134 [Abstract] [Full Text] [Related]
7. Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry. Grabke A, Fernández-Ortuño D, Amiri A, Li X, Peres NA, Smith P, Schnabel G. Phytopathology; 2014 Apr 31; 104(4):396-402. PubMed ID: 24156554 [Abstract] [Full Text] [Related]
8. Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus. Izumitsu K, Yoshimi A, Tanaka C. Eukaryot Cell; 2007 Feb 31; 6(2):171-81. PubMed ID: 17158737 [Abstract] [Full Text] [Related]
9. Characterization of fludioxonil-resistant and pyrimethanil-resistant phenotypes of Penicillium expansum from apple. Li HX, Xiao CL. Phytopathology; 2008 Apr 31; 98(4):427-35. PubMed ID: 18944191 [Abstract] [Full Text] [Related]
10. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. Hu J, Zhou Y, Gao T, Geng J, Dai Y, Ren H, Lamour K, Liu X. Pestic Biochem Physiol; 2019 May 31; 156():123-128. PubMed ID: 31027571 [Abstract] [Full Text] [Related]
11. Determination of natural resistance frequencies in Penicillium digitatum using a new air-sampling method and characterization of fludioxonil- and pyrimethanil-resistant isolates. Kanetis L, Förster H, Adaskaveg JE. Phytopathology; 2010 Aug 31; 100(8):738-46. PubMed ID: 20626277 [Abstract] [Full Text] [Related]
12. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I. Pest Manag Sci; 2001 May 31; 57(5):437-42. PubMed ID: 11374161 [Abstract] [Full Text] [Related]
13. Two histidine kinases can sense different stress cues for activation of the MAPK Hog1 in a fungal insect pathogen. Liu J, Tong SM, Qiu L, Ying SH, Feng MG. Environ Microbiol; 2017 Oct 31; 19(10):4091-4102. PubMed ID: 28677226 [Abstract] [Full Text] [Related]
14. Resistance to fludioxonil in Botrytis cinerea isolates from blackberry and strawberry. Li X, Fernández-Ortuño D, Grabke A, Schnabel G. Phytopathology; 2014 Jul 31; 104(7):724-32. PubMed ID: 24423402 [Abstract] [Full Text] [Related]
15. Sensitivity of Botrytis cinerea From Nectarine/Cherry in China to Six Fungicides and Characterization of Resistant Isolates. Yin WX, Adnan M, Shang Y, Lin Y, Luo CX. Plant Dis; 2018 Dec 31; 102(12):2578-2585. PubMed ID: 30299208 [Abstract] [Full Text] [Related]
16. Control of blue mold (Penicillium expansum) by fludioxonil in apples (cv Empire) under controlled atmosphere and cold storage conditions. Errampalli D, Northover J, Skog L, Brubacher NR, Collucci CA. Pest Manag Sci; 2005 Jun 31; 61(6):591-6. PubMed ID: 15662721 [Abstract] [Full Text] [Related]
17. Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene. Dry IB, Yuan KH, Hutton DG. Fungal Genet Biol; 2004 Jan 31; 41(1):102-8. PubMed ID: 14643263 [Abstract] [Full Text] [Related]
18. Agents that activate the High Osmolarity Glycerol pathway as a means to combat pathogenic molds. Wiedemann A, Spadinger A, Löwe A, Seeger A, Ebel F. Int J Med Microbiol; 2016 Dec 31; 306(8):642-651. PubMed ID: 27713026 [Abstract] [Full Text] [Related]
19. Evaluating the Sensitivity and Efficacy of Fungicides with Different Modes of Action Against Botryosphaeria dothidea. Song Y, Li L, Li C, Lu Z, Men X, Chen F. Plant Dis; 2018 Sep 31; 102(9):1785-1793. PubMed ID: 30125189 [Abstract] [Full Text] [Related]
20. Molecular characterization, fitness and mycotoxin production of benzimidazole-resistant isolates of Penicillium expansum. Malandrakis AA, Markoglou AN, Konstantinou S, Doukas EG, Kalampokis JF, Karaoglanidis GS. Int J Food Microbiol; 2013 Apr 01; 162(3):237-44. PubMed ID: 23454814 [Abstract] [Full Text] [Related] Page: [Next] [New Search]