These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 35105828

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The effect of ZnCl2 activation on microwave absorbing performance in walnut shell-derived nano-porous carbon.
    Wang L, Zhou P, Guo Y, Zhang J, Qiu X, Guan Y, Yu M, Zhu H, Zhang Q.
    RSC Adv; 2019 Mar 22; 9(17):9718-9728. PubMed ID: 35520714
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption.
    Guo Z, Ren P, Zhang F, Duan H, Chen Z, Jin Y, Ren F, Li Z.
    J Colloid Interface Sci; 2022 Mar 15; 610():1077-1087. PubMed ID: 34887064
    [Abstract] [Full Text] [Related]

  • 7. Bimetallic nanocubes embedded in biomass-derived porous carbon to construct magnetic/carbon dual-mechanism layered structures for efficient microwave absorption.
    Zheng H, Nan K, Wang W, Li Q, Wang Y.
    J Colloid Interface Sci; 2024 Jan 15; 653(Pt A):930-941. PubMed ID: 37774656
    [Abstract] [Full Text] [Related]

  • 8. Lotus Leaf Derived NiS/Carbon Nanofibers/Porous Carbon Heterogeneous Structures for Strong and Broadband Microwave Absorption.
    Jiang H, Wang C, Cui B, Xu X, Li M, Xu Z, Tan H, Wang C, Wang Y.
    Small; 2023 Dec 15; 19(50):e2304918. PubMed ID: 37626450
    [Abstract] [Full Text] [Related]

  • 9. 3D lamellar skeletal network of porous carbon derived from hull of water chestnut with excellent microwave absorption properties.
    Shi Q, Zhao Y, Li M, Li B, Hu Z.
    J Colloid Interface Sci; 2023 Jul 15; 641():449-458. PubMed ID: 36948100
    [Abstract] [Full Text] [Related]

  • 10. Lightweight TiO2@C/Carbon Fiber Aerogels Prepared from Ti3C2Tx/Cotton for High-Efficiency Microwave Absorption.
    He M, Liao Q, Zhou Y, Song Z, Wang Y, Feng S, Xu R, Peng H, Chen X, Kang Y.
    Langmuir; 2022 Jan 25; 38(3):945-956. PubMed ID: 35019654
    [Abstract] [Full Text] [Related]

  • 11. Silica-Modified Ordered Mesoporous Carbon for Optimized Impedance-Matching Characteristic Enabling Lightweight and Effective Microwave Absorbers.
    Zhou P, Zhang J, Zhu H, Wang L, Wang X, Song Z, Zhang Q, Yu M, Liu Z, Xu T, Feng W, Feng X.
    ACS Appl Mater Interfaces; 2020 May 20; 12(20):23252-23260. PubMed ID: 32343542
    [Abstract] [Full Text] [Related]

  • 12. Hierarchical and Porous Structures of Carbon Nanotubes-Anchored MOF Derivatives Bridged by Carbon Nanocoils as Lightweight and Broadband Microwave Absorbers.
    Zuo X, Zhang H, Zhou C, Zhao Y, Huang H, Wen N, Sun C, Fan Z, Pan L.
    Small; 2023 Sep 20; 19(36):e2301992. PubMed ID: 37127857
    [Abstract] [Full Text] [Related]

  • 13. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber.
    Singh SK, Akhtar MJ, Kar KK.
    ACS Appl Mater Interfaces; 2018 Jul 25; 10(29):24816-24828. PubMed ID: 29973041
    [Abstract] [Full Text] [Related]

  • 14. Hyper-Cross-Linked Polymers-Derived Porous Tubular Carbon Nanofibers@TiO2 toward a Wide-Band and Lightweight Microwave Absorbent at a Low Loading Content.
    Kang S, Qiao S, Cao Y, Hu Z, Yu J, Wang Y, Zhu J.
    ACS Appl Mater Interfaces; 2020 Oct 14; 12(41):46455-46465. PubMed ID: 32991137
    [Abstract] [Full Text] [Related]

  • 15. Broadband and Lightweight Microwave Absorber Constructed by in Situ Growth of Hierarchical CoFe2O4/Reduced Graphene Oxide Porous Nanocomposites.
    Liu Y, Chen Z, Zhang Y, Feng R, Chen X, Xiong C, Dong L.
    ACS Appl Mater Interfaces; 2018 Apr 25; 10(16):13860-13868. PubMed ID: 29589899
    [Abstract] [Full Text] [Related]

  • 16. 3D Nest-Like Architecture of Core-Shell CoFe2O4@1T/2H-MoS2 Composites with Tunable Microwave Absorption Performance.
    Wang X, Zhu T, Chang S, Lu Y, Mi W, Wang W.
    ACS Appl Mater Interfaces; 2020 Mar 04; 12(9):11252-11264. PubMed ID: 32045209
    [Abstract] [Full Text] [Related]

  • 17. Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption.
    Wang Y, Di X, Lu Z, Wu X.
    J Colloid Interface Sci; 2021 May 04; 589():462-471. PubMed ID: 33486281
    [Abstract] [Full Text] [Related]

  • 18. Design of MOF-derived hierarchical Co@C@RGO composite with controllable heterogeneous interfaces as a high-efficiency microwave absorbent.
    Wang Y, Di X, Gao X, Wu X.
    Nanotechnology; 2020 Sep 25; 31(39):395710. PubMed ID: 32470960
    [Abstract] [Full Text] [Related]

  • 19. Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties.
    Wang H, Zhang Y, Wang Q, Jia C, Cai P, Chen G, Dong C, Guan H.
    RSC Adv; 2019 Mar 15; 9(16):9126-9135. PubMed ID: 35517669
    [Abstract] [Full Text] [Related]

  • 20. Synthesis of hierarchical porous nitrogen-doped reduced graphene oxide/zinc ferrite composite foams as ultrathin and broadband microwave absorbers.
    Shu R, Xu J, Wan Z, Cao X.
    J Colloid Interface Sci; 2022 Feb 15; 608(Pt 3):2994-3003. PubMed ID: 34802762
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.