These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


432 related items for PubMed ID: 35120345

  • 1. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering.
    Choe R, Devoy E, Kuzemchak B, Sherry M, Jabari E, Packer JD, Fisher JP.
    Biofabrication; 2022 Feb 23; 14(2):. PubMed ID: 35120345
    [Abstract] [Full Text] [Related]

  • 2. Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel.
    Koch F, Thaden O, Conrad S, Tröndle K, Finkenzeller G, Zengerle R, Kartmann S, Zimmermann S, Koltay P.
    J Mech Behav Biomed Mater; 2022 Jun 23; 130():105219. PubMed ID: 35413680
    [Abstract] [Full Text] [Related]

  • 3. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites.
    Schipani R, Scheurer S, Florentin R, Critchley SE, Kelly DJ.
    Biofabrication; 2020 May 12; 12(3):035011. PubMed ID: 32252045
    [Abstract] [Full Text] [Related]

  • 4. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering.
    Bandyopadhyay A, Mandal BB, Bhardwaj N.
    J Biomed Mater Res A; 2022 Apr 12; 110(4):884-898. PubMed ID: 34913587
    [Abstract] [Full Text] [Related]

  • 5. Is 3D Printing Promising for Osteochondral Tissue Regeneration?
    Ege D, Hasirci V.
    ACS Appl Bio Mater; 2023 Apr 17; 6(4):1431-1444. PubMed ID: 36943415
    [Abstract] [Full Text] [Related]

  • 6. Low-Concentration Gelatin Methacryloyl Hydrogel with Tunable 3D Extrusion Printability and Cytocompatibility: Exploring Quantitative Process Science and Biophysical Properties.
    Das S, Valoor R, Ratnayake P, Basu B.
    ACS Appl Bio Mater; 2024 May 20; 7(5):2809-2835. PubMed ID: 38602318
    [Abstract] [Full Text] [Related]

  • 7. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration.
    Zhou X, Tenaglio S, Esworthy T, Hann SY, Cui H, Webster TJ, Fenniri H, Zhang LG.
    ACS Appl Mater Interfaces; 2020 Jul 22; 12(29):33219-33228. PubMed ID: 32603082
    [Abstract] [Full Text] [Related]

  • 8. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR, Postma A, Frith JE, Meagher L.
    Biofabrication; 2021 Apr 08; 13(3):. PubMed ID: 33662950
    [Abstract] [Full Text] [Related]

  • 9. Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding.
    Li H, Tan YJ, Liu S, Li L.
    ACS Appl Mater Interfaces; 2018 Apr 04; 10(13):11164-11174. PubMed ID: 29517901
    [Abstract] [Full Text] [Related]

  • 10. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects.
    Zhu S, Chen P, Chen Y, Li M, Chen C, Lu H.
    Am J Sports Med; 2020 Sep 04; 48(11):2808-2818. PubMed ID: 32762553
    [Abstract] [Full Text] [Related]

  • 11. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering.
    Zhu W, Cui H, Boualam B, Masood F, Flynn E, Rao RD, Zhang ZY, Zhang LG.
    Nanotechnology; 2018 May 04; 29(18):185101. PubMed ID: 29446757
    [Abstract] [Full Text] [Related]

  • 12. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair.
    Zhang X, Yan Z, Guan G, Lu Z, Yan S, Du A, Wang L, Li Q.
    J Biomater Appl; 2022 Jan 04; 36(6):1019-1032. PubMed ID: 34605703
    [Abstract] [Full Text] [Related]

  • 13. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair.
    Li H, Yin Y, Xiang Y, Liu H, Guo R.
    Biomed Mater; 2020 May 07; 15(4):045004. PubMed ID: 32092713
    [Abstract] [Full Text] [Related]

  • 14. Osteochondral Regeneration With Anatomical Scaffold 3D-Printing-Design Considerations for Interface Integration.
    Nedrelow DS, Townsend JM, Detamore MS.
    J Biomed Mater Res A; 2024 Oct 10. PubMed ID: 39387548
    [Abstract] [Full Text] [Related]

  • 15. Low-Temperature Extrusion of Waterborne Polyurethane-Polycaprolactone Composites for Multi-Material Bioprinting of Engineered Elastic Cartilage.
    Wang D, Feng Z, Zeng J, Wang Q, Zheng Y, Liu X, Jiang H.
    Macromol Biosci; 2024 Jul 10; 24(7):e2300557. PubMed ID: 38409648
    [Abstract] [Full Text] [Related]

  • 16. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.
    Hamid OA, Eltaher HM, Sottile V, Yang J.
    Mater Sci Eng C Mater Biol Appl; 2021 Jan 10; 120():111707. PubMed ID: 33545866
    [Abstract] [Full Text] [Related]

  • 17. Designing Biomimetic 3D-Printed Osteochondral Scaffolds for Enhanced Load-Bearing Capacity.
    Choe RH, Kuzemchak BC, Kotsanos GJ, Mirdamadi E, Sherry M, Devoy E, Lowe T, Packer JD, Fisher JP.
    Tissue Eng Part A; 2024 Jul 10; 30(13-14):409-420. PubMed ID: 38481121
    [Abstract] [Full Text] [Related]

  • 18. Multi-material 3D bioprinting of porous constructs for cartilage regeneration.
    Ruiz-Cantu L, Gleadall A, Faris C, Segal J, Shakesheff K, Yang J.
    Mater Sci Eng C Mater Biol Appl; 2020 Apr 10; 109():110578. PubMed ID: 32228894
    [Abstract] [Full Text] [Related]

  • 19. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing.
    Zhang W, Lian Q, Li D, Wang K, Hao D, Bian W, Jin Z.
    Mater Sci Eng C Mater Biol Appl; 2015 Jan 10; 46():10-5. PubMed ID: 25491954
    [Abstract] [Full Text] [Related]

  • 20. A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing.
    Anand R, Salar Amoli M, Huysecom AS, Amorim PA, Agten H, Geris L, Bloemen V.
    Biomed Mater; 2022 Jun 24; 17(4):. PubMed ID: 35700719
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.