These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 3512166

  • 21. Myoelectric signal processing for control of powered limb prostheses.
    Parker P, Englehart K, Hudgins B.
    J Electromyogr Kinesiol; 2006 Dec; 16(6):541-8. PubMed ID: 17045489
    [Abstract] [Full Text] [Related]

  • 22. Finite element modeling of electromagnetic signal propagation in a phantom arm.
    Kuiken TA, Stoykov NS, Popović M, Lowery M, Taflove A.
    IEEE Trans Neural Syst Rehabil Eng; 2001 Dec; 9(4):346-54. PubMed ID: 12018647
    [Abstract] [Full Text] [Related]

  • 23. Digital approaches to myoelectric state control of prostheses.
    Philipson L, Childress DS, Strysik J.
    Bull Prosthet Res; 1981 Dec; 10-36():3-11. PubMed ID: 7344755
    [Abstract] [Full Text] [Related]

  • 24. Development and evaluation of externally powered upper-limb prosthesis. Summary of research project activities July 1, 1959--December 31, 1959.
    Seamone W.
    Bull Prosthet Res; 1970 Dec; 10(13):57-63. PubMed ID: 4940684
    [No Abstract] [Full Text] [Related]

  • 25. Functional comparison of upper extremity amputees using myoelectric and conventional prostheses.
    Stein RB, Walley M.
    Arch Phys Med Rehabil; 1983 Jun; 64(6):243-8. PubMed ID: 6860093
    [Abstract] [Full Text] [Related]

  • 26. Differences in quality of movements made with body-powered and myoelectric prostheses during activities of daily living.
    Engdahl SM, Gates DH.
    Clin Biomech (Bristol); 2021 Apr; 84():105311. PubMed ID: 33812199
    [Abstract] [Full Text] [Related]

  • 27. Sensory feedback control of upper- and lower-extremity motor prostheses.
    Phillips CA.
    Crit Rev Biomed Eng; 1988 Apr; 16(2):105-40. PubMed ID: 3053043
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. The theoretical development of a multichannel time-series myoprocessor for simultaneous limb function detection and muscle force estimation.
    Triolo RJ, Moskowitz GD.
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):1004-17. PubMed ID: 2793194
    [Abstract] [Full Text] [Related]

  • 33. Performance of above elbow body-powered prostheses in visually guided unconstrained motion tasks.
    Doeringer JA, Hogan N.
    IEEE Trans Biomed Eng; 1995 Jun; 42(6):621-31. PubMed ID: 7790019
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Control of upper-limb prostheses in several degrees of freedom.
    Graupe D.
    Bull Prosthet Res; 1974 Jun; ():226-36. PubMed ID: 4462903
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.