These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


211 related items for PubMed ID: 35123128

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Glucose transporter 8 (GLUT8) mediates fructose-induced de novo lipogenesis and macrosteatosis.
    DeBosch BJ, Chen Z, Saben JL, Finck BN, Moley KH.
    J Biol Chem; 2014 Apr 18; 289(16):10989-10998. PubMed ID: 24519932
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Tetraspanin TM4SF5 in hepatocytes negatively modulates SLC27A transporters during acute fatty acid supply.
    Park D, Kim E, Lee H, Shin EA, Lee H, Lee JW.
    Arch Biochem Biophys; 2021 Oct 15; 710():109004. PubMed ID: 34364885
    [Abstract] [Full Text] [Related]

  • 6. TM4SF5-Mediated Regulation of Hepatocyte Transporters during Metabolic Liver Diseases.
    Kim JE, Kim E, Lee JW.
    Int J Mol Sci; 2022 Jul 29; 23(15):. PubMed ID: 35955521
    [Abstract] [Full Text] [Related]

  • 7. Glucose transporter-8 (GLUT8) mediates glucose intolerance and dyslipidemia in high-fructose diet-fed male mice.
    DeBosch BJ, Chen Z, Finck BN, Chi M, Moley KH.
    Mol Endocrinol; 2013 Nov 29; 27(11):1887-96. PubMed ID: 24030250
    [Abstract] [Full Text] [Related]

  • 8. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization.
    DeBosch BJ, Chi M, Moley KH.
    Endocrinology; 2012 Sep 29; 153(9):4181-91. PubMed ID: 22822162
    [Abstract] [Full Text] [Related]

  • 9. Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease.
    Softic S, Cohen DE, Kahn CR.
    Dig Dis Sci; 2016 May 29; 61(5):1282-93. PubMed ID: 26856717
    [Abstract] [Full Text] [Related]

  • 10. TM4SF5-dependent crosstalk between hepatocytes and macrophages to reprogram the inflammatory environment.
    Kim E, Um H, Park J, Jung JW, Kim JE, Lee H, Shin EA, Pinanga Y, Lee H, Nam SH, Lee JW.
    Cell Rep; 2021 Nov 16; 37(7):110018. PubMed ID: 34788612
    [Abstract] [Full Text] [Related]

  • 11. Integrated omics analysis for characterization of the contribution of high fructose corn syrup to non-alcoholic fatty liver disease in obesity.
    Papadopoulos G, Legaki AI, Georgila K, Vorkas P, Giannousi E, Stamatakis G, Moustakas II, Petrocheilou M, Pyrina I, Gercken B, Kassi E, Chavakis T, Pateras IS, Panayotou G, Gika H, Samiotaki M, Eliopoulos AG, Chatzigeorgiou A.
    Metabolism; 2023 Jul 16; 144():155552. PubMed ID: 36996933
    [Abstract] [Full Text] [Related]

  • 12. Comparative study of the modulation of fructose/sucrose-induced hepatic steatosis by mixed lipid formulations varying in unsaturated fatty acid content.
    Siddiqui RA, Xu Z, Harvey KA, Pavlina TM, Becker MJ, Zaloga GP.
    Nutr Metab (Lond); 2015 Jul 16; 12():41. PubMed ID: 26583036
    [Abstract] [Full Text] [Related]

  • 13. Inhibition on XBP1s-driven lipogenesis by Qushi Huayu Decoction contributes to amelioration of hepatic steatosis induced by fructose.
    Tian H, Fang Y, Liu W, Wang J, Zhao J, Tang H, Yin Y, Hu Y, Peng J.
    J Ethnopharmacol; 2023 Jan 30; 301():115806. PubMed ID: 36216198
    [Abstract] [Full Text] [Related]

  • 14. The hepatocyte IKK:NF-κB axis promotes liver steatosis by stimulating de novo lipogenesis and cholesterol synthesis.
    Heida A, Gruben N, Catrysse L, Koehorst M, Koster M, Kloosterhuis NJ, Gerding A, Havinga R, Bloks VW, Bongiovanni L, Wolters JC, van Dijk T, van Loo G, de Bruin A, Kuipers F, Koonen DPY, van de Sluis B.
    Mol Metab; 2021 Dec 30; 54():101349. PubMed ID: 34626855
    [Abstract] [Full Text] [Related]

  • 15. SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy.
    Mayer AL, Higgins CB, Heitmeier MR, Kraft TE, Qian X, Crowley JR, Hyrc KL, Beatty WL, Yarasheski KE, Hruz PW, DeBosch BJ.
    Sci Rep; 2016 Dec 06; 6():38586. PubMed ID: 27922102
    [Abstract] [Full Text] [Related]

  • 16. Intestinal dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, GLUT2 and GLUT8.
    Corpe CP, Eck P, Wang J, Al-Hasani H, Levine M.
    J Biol Chem; 2013 Mar 29; 288(13):9092-101. PubMed ID: 23396969
    [Abstract] [Full Text] [Related]

  • 17. The Effects of Long-Term High Fat and/or High Sugar Feeding on Sources of Postprandial Hepatic Glycogen and Triglyceride Synthesis in Mice.
    Reis-Costa A, Belew GD, Viegas I, Tavares LC, Meneses MJ, Patrício B, Gastaldelli A, Macedo MP, Jones JG.
    Nutrients; 2024 Jul 09; 16(14):. PubMed ID: 39064628
    [Abstract] [Full Text] [Related]

  • 18. Impact of liver-specific GLUT8 silencing on fructose-induced inflammation and omega oxidation.
    Novelle MG, Bravo SB, Deshons M, Iglesias C, García-Vence M, Annells R, da Silva Lima N, Nogueiras R, Fernández-Rojo MA, Diéguez C, Romero-Picó A.
    iScience; 2021 Feb 19; 24(2):102071. PubMed ID: 33554072
    [Abstract] [Full Text] [Related]

  • 19. Genetic depletion of Soat2 diminishes hepatic steatosis via genes regulating de novo lipogenesis and by GLUT2 protein in female mice.
    Ahmed O, Pramfalk C, Pedrelli M, Olin M, Steffensen KR, Eriksson M, Parini P.
    Dig Liver Dis; 2019 Jul 19; 51(7):1016-1022. PubMed ID: 30630736
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.