These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
410 related items for PubMed ID: 35128552
1. Stretchable, self-healing and adhesive sodium alginate-based composite hydrogels as wearable strain sensors for expansion-contraction motion monitoring. Zhang W, Xu L, Zhao M, Ma Y, Zheng T, Shi L. Soft Matter; 2022 Feb 23; 18(8):1644-1652. PubMed ID: 35128552 [Abstract] [Full Text] [Related]
2. A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor. Zhao L, Ren Z, Liu X, Ling Q, Li Z, Gu H. ACS Appl Mater Interfaces; 2021 Mar 10; 13(9):11344-11355. PubMed ID: 33620195 [Abstract] [Full Text] [Related]
3. Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host-Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions. Liu X, Ren Z, Liu F, Zhao L, Ling Q, Gu H. ACS Appl Mater Interfaces; 2021 Mar 31; 13(12):14612-14622. PubMed ID: 33723988 [Abstract] [Full Text] [Related]
4. Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. Lu Y, Yue Y, Ding Q, Mei C, Xu X, Wu Q, Xiao H, Han J. ACS Appl Mater Interfaces; 2021 Oct 27; 13(42):50281-50297. PubMed ID: 34637615 [Abstract] [Full Text] [Related]
5. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. Zheng H, Lin N, He Y, Zuo B. ACS Appl Mater Interfaces; 2021 Aug 25; 13(33):40013-40031. PubMed ID: 34375080 [Abstract] [Full Text] [Related]
6. Ultrastretchable Wearable Strain and Pressure Sensors Based on Adhesive, Tough, and Self-healing Hydrogels for Human Motion Monitoring. Xu J, Wang G, Wu Y, Ren X, Gao G. ACS Appl Mater Interfaces; 2019 Jul 17; 11(28):25613-25623. PubMed ID: 31273992 [Abstract] [Full Text] [Related]
7. Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing. Deng Z, Hu T, Lei Q, He J, Ma PX, Guo B. ACS Appl Mater Interfaces; 2019 Feb 20; 11(7):6796-6808. PubMed ID: 30673228 [Abstract] [Full Text] [Related]
8. Tough, self-healing, adhesive double network conductive hydrogel based on gelatin-polyacrylamide covalently bridged by oxidized sodium alginate for durable wearable sensors. Wang Z, Xu L, Liu W, Chen Y, Yang Q, Tang Z, Tan H, Li N, Du J, Yu M, Xu J. Int J Biol Macromol; 2024 Sep 20; 276(Pt 1):133802. PubMed ID: 38992552 [Abstract] [Full Text] [Related]
9. A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors. Zhang Y, Ren E, Li A, Cui C, Guo R, Tang H, Xiao H, Zhou M, Qin W, Wang X, Liu L. J Mater Chem B; 2021 Jan 28; 9(3):719-730. PubMed ID: 33306084 [Abstract] [Full Text] [Related]
10. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. Zhang X, Chen J, He J, Bai Y, Zeng H. J Colloid Interface Sci; 2021 Mar 28; 585():420-432. PubMed ID: 33268058 [Abstract] [Full Text] [Related]
11. Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels. Li R, Ren J, Zhang M, Li M, Li Y, Yang W. Biomacromolecules; 2024 Feb 12; 25(2):614-625. PubMed ID: 38241010 [Abstract] [Full Text] [Related]
12. Dual-Sensing, Stretchable, Fatigue-Resistant, Adhesive, and Conductive Hydrogels Used as Flexible Sensors for Human Motion Monitoring. Kang B, Yan X, Zhao Z, Song S. Langmuir; 2022 Jun 07; 38(22):7013-7023. PubMed ID: 35613322 [Abstract] [Full Text] [Related]
13. Carbon Nanotubes/Hydrophobically Associated Hydrogels as Ultrastretchable, Highly Sensitive, Stable Strain, and Pressure Sensors. Qin Z, Sun X, Yu Q, Zhang H, Wu X, Yao M, Liu W, Yao F, Li J. ACS Appl Mater Interfaces; 2020 Jan 29; 12(4):4944-4953. PubMed ID: 31912722 [Abstract] [Full Text] [Related]
14. A tough, stretchable, adhesive and electroconductive polyacrylamide hydrogel sensor incorporated with sulfonated nanocellulose and carbon nanotubes. Deng W, Zhang Y, Wu M, Liu C, Rahmaninia M, Tang Y, Li B. Int J Biol Macromol; 2024 Nov 29; 279(Pt 2):135165. PubMed ID: 39218191 [Abstract] [Full Text] [Related]
15. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. Huang F, Wei W, Fan Q, Li L, Zhao M, Zhou Z. J Colloid Interface Sci; 2022 Jun 29; 615():215-226. PubMed ID: 35131502 [Abstract] [Full Text] [Related]
16. Bioinspired 3D Printable, Self-Healable, and Stretchable Hydrogels with Multiple Conductivities for Skin-like Wearable Strain Sensors. Wei J, Xie J, Zhang P, Zou Z, Ping H, Wang W, Xie H, Shen JZ, Lei L, Fu Z. ACS Appl Mater Interfaces; 2021 Jan 20; 13(2):2952-2960. PubMed ID: 33411490 [Abstract] [Full Text] [Related]
17. Highly Stretchable and Biocompatible Strain Sensors Based on Mussel-Inspired Super-Adhesive Self-Healing Hydrogels for Human Motion Monitoring. Jing X, Mi HY, Lin YJ, Enriquez E, Peng XF, Turng LS. ACS Appl Mater Interfaces; 2018 Jun 20; 10(24):20897-20909. PubMed ID: 29863322 [Abstract] [Full Text] [Related]
18. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Zheng C, Lu K, Lu Y, Zhu S, Yue Y, Xu X, Mei C, Xiao H, Wu Q, Han J. Carbohydr Polym; 2020 Dec 15; 250():116905. PubMed ID: 33049881 [Abstract] [Full Text] [Related]
19. Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors. Peng X, Wang W, Yang W, Chen J, Peng Q, Wang T, Yang D, Wang J, Zhang H, Zeng H. J Colloid Interface Sci; 2022 Jul 15; 618():111-120. PubMed ID: 35338921 [Abstract] [Full Text] [Related]
20. A stretchable, self-healing, okra polysaccharide-based hydrogel for fast-response and ultra-sensitive strain sensors. Ma Y, Liu K, Lao L, Li X, Zhang Z, Lu S, Li Y, Li Z. Int J Biol Macromol; 2022 Apr 30; 205():491-499. PubMed ID: 35182565 [Abstract] [Full Text] [Related] Page: [Next] [New Search]