These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
383 related items for PubMed ID: 35137494
1. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. Mahapatra S, Yadav R, Ramakrishna W. J Appl Microbiol; 2022 May; 132(5):3543-3562. PubMed ID: 35137494 [Abstract] [Full Text] [Related]
2. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Hashem A, Tabassum B, Fathi Abd Allah E. Saudi J Biol Sci; 2019 Sep; 26(6):1291-1297. PubMed ID: 31516360 [Abstract] [Full Text] [Related]
3. Untargeted metabolite profiling to elucidate rhizosphere and leaf metabolome changes of wheat cultivars (Triticum aestivum L.) treated with the plant growth-promoting rhizobacteria Paenibacillus alvei (T22) and Bacillus subtilis. Mashabela MD, Tugizimana F, Steenkamp PA, Piater LA, Dubery IA, Mhlongo MI. Front Microbiol; 2022 Sep; 13():971836. PubMed ID: 36090115 [Abstract] [Full Text] [Related]
4. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Microbiol Res; 2020 Sep; 238():126486. PubMed ID: 32464574 [Abstract] [Full Text] [Related]
5. Bacillus altitudinis AD13-4 Enhances Saline-Alkali Stress Tolerance of Alfalfa and Affects Composition of Rhizosphere Soil Microbial Community. Khoso MA, Wang M, Zhou Z, Huang Y, Li S, Zhang Y, Qian G, Ko SN, Pang Q, Liu C, Li L. Int J Mol Sci; 2024 May 26; 25(11):. PubMed ID: 38891975 [Abstract] [Full Text] [Related]
6. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. Bhat BA, Tariq L, Nissar S, Islam ST, Islam SU, Mangral Z, Ilyas N, Sayyed RZ, Muthusamy G, Kim W, Dar TUH. J Appl Microbiol; 2022 Nov 26; 133(5):2717-2741. PubMed ID: 36017561 [Abstract] [Full Text] [Related]
7. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Chen S, Waghmode TR, Sun R, Kuramae EE, Hu C, Liu B. Microbiome; 2019 Oct 22; 7(1):136. PubMed ID: 31640813 [Abstract] [Full Text] [Related]
8. Enhanced salt tolerance in Glycyrrhiza uralensis Fisch. via Bacillus subtilis inoculation alters microbial community. Xiao J, Xiao J, Gao P, Zhang Y, Yan B, Wu H, Zhang Y. Microbiol Spectr; 2024 Oct 03; 12(10):e0381223. PubMed ID: 39189758 [Abstract] [Full Text] [Related]
9. Harnessing rhizobacteria to fulfil inter-linked nutrient dependency on soil and alleviate stresses in plants. Neemisha, Kumar A, Sharma P, Kaur A, Sharma S, Jain R. J Appl Microbiol; 2022 Nov 03; 133(5):2694-2716. PubMed ID: 35656999 [Abstract] [Full Text] [Related]
10. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience. Arif I, Batool M, Schenk PM. Trends Biotechnol; 2020 Dec 03; 38(12):1385-1396. PubMed ID: 32451122 [Abstract] [Full Text] [Related]
11. Bacillus aryabhattai LAD impacts rhizosphere bacterial community structure and promotes maize plant growth. Deng C, Zhang N, Liang X, Huang T, Li B. J Sci Food Agric; 2022 Nov 03; 102(14):6650-6657. PubMed ID: 35603593 [Abstract] [Full Text] [Related]
12. Characterization of plant growth-promoting alkalotolerant Alcaligenes and Bacillus strains for mitigating the alkaline stress in Zea mays. Dixit VK, Misra S, Mishra SK, Tewari SK, Joshi N, Chauhan PS. Antonie Van Leeuwenhoek; 2020 Jul 03; 113(7):889-905. PubMed ID: 32152804 [Abstract] [Full Text] [Related]
13. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. Molecules; 2016 Apr 29; 21(5):. PubMed ID: 27136521 [Abstract] [Full Text] [Related]
14. Using multi-omics to explore the effect of Bacillus velezensis SAAS-63 on resisting nutrient stress in lettuce. Bai Y, Song K, Gao M, Ma J, Zhou Y, Liu H, Zeng H, Wang J, Zheng X. Appl Microbiol Biotechnol; 2024 Apr 29; 108(1):313. PubMed ID: 38683244 [Abstract] [Full Text] [Related]
15. Effects of Plant Growth-Promoting Rhizobacteria on the Growth and Soil Microbial Community of Carya illinoinensis. Shi JW, Lu LX, Shi HM, Ye JR. Curr Microbiol; 2022 Oct 08; 79(11):352. PubMed ID: 36209341 [Abstract] [Full Text] [Related]
16. Cyclic di-AMP Acts as an Extracellular Signal That Impacts Bacillus subtilis Biofilm Formation and Plant Attachment. Townsley L, Yannarell SM, Huynh TN, Woodward JJ, Shank EA. mBio; 2018 Mar 27; 9(2):. PubMed ID: 29588402 [Abstract] [Full Text] [Related]
17. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. Saeed Q, Xiukang W, Haider FU, Kučerik J, Mumtaz MZ, Holatko J, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M, Mustafa A. Int J Mol Sci; 2021 Sep 29; 22(19):. PubMed ID: 34638870 [Abstract] [Full Text] [Related]
18. Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. Khan N, Bano A, Babar MDA. PLoS One; 2020 Sep 29; 15(4):e0231426. PubMed ID: 32271848 [Abstract] [Full Text] [Related]
19. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. Priya P, Aneesh B, Harikrishnan K. J Microbiol Methods; 2021 Jun 29; 185():106215. PubMed ID: 33839214 [Abstract] [Full Text] [Related]
20. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK. Microbiol Res; 2018 Jan 29; 206():131-140. PubMed ID: 29146250 [Abstract] [Full Text] [Related] Page: [Next] [New Search]