These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 35159890

  • 1. Shape Modulation of Plasmonic Nanostructures by Unconventional Lithographic Technique.
    Colombelli A, Lospinoso D, Rella R, Manera MG.
    Nanomaterials (Basel); 2022 Feb 05; 12(3):. PubMed ID: 35159890
    [Abstract] [Full Text] [Related]

  • 2. Nanohole arrays in chemical analysis: manufacturing methods and applications.
    Masson JF, Murray-Méthot MP, Live LS.
    Analyst; 2010 Jul 05; 135(7):1483-9. PubMed ID: 20358096
    [Abstract] [Full Text] [Related]

  • 3. Wet etching-assisted colloidal lithography: a general strategy toward nanodisk and nanohole arrays on arbitrary substrates.
    Wang J, Duan G, Li Y, Liu G, Cai W.
    ACS Appl Mater Interfaces; 2014 Jun 25; 6(12):9207-13. PubMed ID: 24858013
    [Abstract] [Full Text] [Related]

  • 4. Nano-substructured plasmonic pore arrays: a robust, low cost route to reproducible hierarchical structures extended across macroscopic dimensions.
    Gimenez AV, Kho KW, Keyes TE.
    Nanoscale Adv; 2020 Oct 13; 2(10):4740-4756. PubMed ID: 36132883
    [Abstract] [Full Text] [Related]

  • 5. Plasmonic films based on colloidal lithography.
    Ai B, Yu Y, Möhwald H, Zhang G, Yang B.
    Adv Colloid Interface Sci; 2014 Apr 13; 206():5-16. PubMed ID: 24321859
    [Abstract] [Full Text] [Related]

  • 6. Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching.
    Gonçalves MR, Makaryan T, Enderle F, Wiedemann S, Plettl A, Marti O, Ziemann P.
    Beilstein J Nanotechnol; 2011 Apr 13; 2():448-58. PubMed ID: 22003451
    [Abstract] [Full Text] [Related]

  • 7. Self-Assembled Metal Nanohole Arrays with Tunable Plasmonic Properties for SERS Single-Molecule Detection.
    Lospinoso D, Colombelli A, Lomascolo M, Rella R, Manera MG.
    Nanomaterials (Basel); 2022 Jan 24; 12(3):. PubMed ID: 35159725
    [Abstract] [Full Text] [Related]

  • 8. Plasmonic and SERS performances of compound nanohole arrays fabricated by shadow sphere lithography.
    Skehan C, Ai B, Larson SR, Stone KM, Dennis WM, Zhao Y.
    Nanotechnology; 2018 Mar 02; 29(9):095301. PubMed ID: 29320374
    [Abstract] [Full Text] [Related]

  • 9. Interface-induced nucleation and growth: a new route for fabricating ordered silver nanohole arrays.
    Zuo Z, Wen Y, Zhang S.
    Nanoscale; 2018 Aug 07; 10(29):14039-14046. PubMed ID: 29995028
    [Abstract] [Full Text] [Related]

  • 10. Interfacial Capillary-Force-Driven Self-Assembly of Monolayer Colloidal Crystals for Supersensitive Plasmonic Sensors.
    Wang H, Chen W, Chen B, Jiao Y, Wang Y, Wang X, Du X, Hu Y, Lv X, Zeng Y, Wang X, Qian L, Xiong J.
    Small; 2020 Feb 07; 16(8):e1905480. PubMed ID: 31994288
    [Abstract] [Full Text] [Related]

  • 11. How Colloidal Lithography Limits the Optical Quality of Plasmonic Nanohole Arrays.
    Goerlitzer ESA, Zhan M, Choi S, Vogel N.
    Langmuir; 2023 Apr 11; 39(14):5222-5229. PubMed ID: 36989478
    [Abstract] [Full Text] [Related]

  • 12. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS, Theodorou IG, Centeno A, Petrov PK, Alford NM, Ryan MP, Xie F.
    ACS Appl Mater Interfaces; 2019 Jul 03; 11(26):23083-23092. PubMed ID: 31252484
    [Abstract] [Full Text] [Related]

  • 13. Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene.
    Lotito V, Zambelli T.
    J Colloid Interface Sci; 2015 Jun 01; 447():202-10. PubMed ID: 25432446
    [Abstract] [Full Text] [Related]

  • 14. Aluminum Nanoholes for Optical Biosensing.
    Barrios CA, Canalejas-Tejero V, Herranz S, Urraca J, Moreno-Bondi MC, Avella-Oliver M, Maquieira Á, Puchades R.
    Biosensors (Basel); 2015 Jul 09; 5(3):417-31. PubMed ID: 26184330
    [Abstract] [Full Text] [Related]

  • 15. Fabrication of Periodic Gold Nanocup Arrays Using Colloidal Lithography.
    DeVetter BM, Bernacki BE, Bennett WD, Schemer-Kohrn A, Alvine KJ.
    J Vis Exp; 2017 Sep 02; (127):. PubMed ID: 28892029
    [Abstract] [Full Text] [Related]

  • 16. Modulating Optical Characteristics of Nanoimprinted Plasmonic Device by Re-Shaping Process of Polymer Mold.
    Yamada H, Sueyoshi K, Hisamoto H, Endo T.
    Micromachines (Basel); 2021 Oct 28; 12(11):. PubMed ID: 34832735
    [Abstract] [Full Text] [Related]

  • 17. Gold nanoholes fabricated by colloidal lithography: novel insights into nanofabrication, short-range correlation and optical properties.
    Cesaria M, Taurino A, Manera MG, Minunni M, Scarano S, Rella R.
    Nanoscale; 2019 Apr 25; 11(17):8416-8432. PubMed ID: 30985849
    [Abstract] [Full Text] [Related]

  • 18. Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS.
    Gisbert Quilis N, Lequeux M, Venugopalan P, Khan I, Knoll W, Boujday S, Lamy de la Chapelle M, Dostalek J.
    Nanoscale; 2018 May 31; 10(21):10268-10276. PubMed ID: 29790495
    [Abstract] [Full Text] [Related]

  • 19. Large-Scale Plasmonic Hybrid Framework with Built-In Nanohole Array as Multifunctional Optical Sensing Platforms.
    Wang X, Ma X, Shi E, Lu P, Dou L, Zhang X, Wang H.
    Small; 2020 Mar 31; 16(11):e1906459. PubMed ID: 32072751
    [Abstract] [Full Text] [Related]

  • 20. Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch(2).
    Huang C, Förste A, Walheim S, Schimmel T.
    Beilstein J Nanotechnol; 2015 Mar 31; 6():1205-11. PubMed ID: 26171297
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.