These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
159 related items for PubMed ID: 35161201
21. Effect of Heating Modes on Reactive Sintering of Ca3Co4O9 Ceramics. Teja PR, Annamalai AR, Evangeline T G, Srikanth M, Agrawal DK, Jen CP. Materials (Basel); 2021 Jan 07; 14(2):. PubMed ID: 33430402 [Abstract] [Full Text] [Related]
22. Temperature-Insensitive Piezoelectric Performance in Pb(Zr0.52Ti0.42Sn0.02Nb0.04)O3 Ceramics Prepared by Spark Plasma Sintering. Han B, Zhao C, Zhu ZX, Chen X, Han Y, Hu D, Zhang MH, Thong HC, Wang K. ACS Appl Mater Interfaces; 2017 Oct 04; 9(39):34078-34084. PubMed ID: 28895720 [Abstract] [Full Text] [Related]
23. Effect of UV irradiation on the densification behavior, microstructure, and microwave dielectric properties of low temperature sintering Al2O3 ceramics. Wu H, Li W. Heliyon; 2024 Feb 29; 10(4):e26328. PubMed ID: 38420478 [Abstract] [Full Text] [Related]
24. Effect on the grain size of single-mode microwave sintered NiCuZn ferrite and zinc titanate dielectric resonator ceramics. Sirugudu RK, Vemuri RK, Venkatachalam S, Gopalakrishnan A, Budaraju SM. J Microw Power Electromagn Energy; 2011 Feb 29; 45(3):128-36. PubMed ID: 24427876 [Abstract] [Full Text] [Related]
25. [Translucency of dental zirconia ceramics sintered in conventional and microwave ovens]. Yuemei J, Ying Y, Wenhui Z, Guoxin H, Qiuxia Y. Hua Xi Kou Qiang Yi Xue Za Zhi; 2015 Dec 29; 33(6):642-5. PubMed ID: 27051961 [Abstract] [Full Text] [Related]
26. Design of a High-Efficiency and -Gain Antenna Using Novel Low-Loss, Temperature-Stable Li2Ti1-x(Cu1/3Nb2/3)xO3 Microwave Dielectric Ceramics. Guo HH, Fu MS, Zhou D, Du C, Wang PJ, Pang LX, Liu WF, Sombra ASB, Su JZ. ACS Appl Mater Interfaces; 2021 Jan 13; 13(1):912-923. PubMed ID: 33356114 [Abstract] [Full Text] [Related]
27. The Role of the Activator Additives Introduction Method in the Cold Sintering Process of ZnO Ceramics: CSP/SPS Approach. Ivakin YD, Smirnov AV, Kurmysheva AY, Kharlanov AN, Solís Pinargote NW, Smirnov A, Grigoriev SN. Materials (Basel); 2021 Nov 05; 14(21):. PubMed ID: 34772204 [Abstract] [Full Text] [Related]
28. Electrical properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 piezoelectric ceramics by optimizing sintering temperature. Lee SH, Lee SG, Lee YH. Nanoscale Res Lett; 2012 Jan 05; 7(1):15. PubMed ID: 22221445 [Abstract] [Full Text] [Related]
29. Sintering conditions of cordierite for microwave/millimeterwave dielectrics. Ohsato H, Terada M, Kagomiya I, Kawamura K, Kakimoto K, Kim ES. IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May 05; 55(5):1081-5. PubMed ID: 18519216 [Abstract] [Full Text] [Related]
30. Crystal Structure, Infrared Reflection Spectrum, and Improved Microwave Dielectric Characteristics of Ba4Sm28/3Ti18O54 Ceramics via One-Step Reaction Sintering. Li Z, Zhou H, Xiong G, Wang H, Wang G. Materials (Basel); 2024 Jul 13; 17(14):. PubMed ID: 39063769 [Abstract] [Full Text] [Related]
31. Zn2+-Enhanced Lithium Magnesium Molybdate Ultralow Temperature Cofired Ceramics for Terahertz Wavefront Modulation Applications. Li F, Li Y, Zhao Q, Huang L, Shang Y, Li C, Luo L, Li J, Tang T, Wen Q. ACS Appl Mater Interfaces; 2023 Dec 27; 15(51):59600-59609. PubMed ID: 38091576 [Abstract] [Full Text] [Related]
32. Sintering, Microstructure, and Dielectric Properties of Copper Borates for High Frequency LTCC Applications. Szwagierczak D, Synkiewicz-Musialska B, Kulawik J, Pałka N. Materials (Basel); 2021 Jul 18; 14(14):. PubMed ID: 34300936 [Abstract] [Full Text] [Related]
33. A Combination of Calcination and the Spark Plasma Sintering Method in Multiferroic Ceramic Composite Technology: Effects of Process Temperature and Dwell Time. Bochenek D. Materials (Basel); 2022 Mar 30; 15(7):. PubMed ID: 35407856 [Abstract] [Full Text] [Related]
34. Spark plasma sintering of hydroxyapatite powders. Gu YW, Loh NH, Kho KA, Tor SB, Cheang P. Biomaterials; 2002 Jan 30; 23(1):37-43. PubMed ID: 11762852 [Abstract] [Full Text] [Related]
35. Synthesis, characterization and in vitro biocompatibility study of strontium titanate ceramic: A potential biomaterial. Sahoo S, Sinha A, Das M. J Mech Behav Biomed Mater; 2020 Feb 30; 102():103494. PubMed ID: 31654991 [Abstract] [Full Text] [Related]
36. Microwave dielectric properties of low-temperature-fired MgNb2O6 ceramics for LTCC applications. Wu C, Hu Y, Bao S, Wang G, Jiang P, Chen J, Duan Z, Deng W. RSC Adv; 2020 Aug 10; 10(50):29835-29842. PubMed ID: 35518268 [Abstract] [Full Text] [Related]
37. The effect of dielectric properties of sintering additives on microwave sintered silicon nitride ceramics. Chockalingam S, George J, Earl D, Amarakoon VR. J Microw Power Electromagn Energy; 2008 Aug 10; 42(2):4-14. PubMed ID: 19227072 [Abstract] [Full Text] [Related]
38. Optimization of spark plasma sintered titania for potential application as a keratoprosthesis skirt. Li Z, Yam GH, Thompson BC, Setiawan M, Goh GTW, Tan D, Mehta JS, Khor KA. J Biomed Mater Res A; 2017 Dec 10; 105(12):3502-3513. PubMed ID: 28869708 [Abstract] [Full Text] [Related]
39. Crystal structure and microwave dielectric behaviors of ultra-low-temperature fired x(Ag(0.5)Bi(0.5))MoO₄-(1 - x)BiVO₄ (0.0 ≤ x ≤ 1.0) solid solution with scheelite structure. Zhou D, Pang LX, Qi ZM. Inorg Chem; 2014 Sep 02; 53(17):9222-7. PubMed ID: 25105210 [Abstract] [Full Text] [Related]
40. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC) Materials. Orrù R, Cao G. Materials (Basel); 2013 Apr 29; 6(5):1566-1583. PubMed ID: 28809229 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]