These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 35191437

  • 1. Oxygenolysis of a series of copper(II)-flavonolate adducts varying the electronic factors on supporting ligands as a mimic of quercetin 2,4-dioxygenase-like activity.
    Podder N, Dey S, Anoop A, Mandal S.
    Dalton Trans; 2022 Mar 15; 51(11):4338-4353. PubMed ID: 35191437
    [Abstract] [Full Text] [Related]

  • 2. The effects of metal cofactors on the reactivity of quercetin 2,4-dioxygenase: synthetic model studies with M(II)-complexes (M = Mn, Co, Ni, Cu, Zn) and assessment of the regulatory factors in catalytic efficacy.
    Podder N, Mandal S.
    Dalton Trans; 2022 Nov 15; 51(44):17064-17080. PubMed ID: 36314263
    [Abstract] [Full Text] [Related]

  • 3. Flavonolate complexes of M(II) (M = Mn, Fe, Co, Ni, Cu, and Zn). Structural and functional models for the ES (enzyme-substrate) complex of quercetin 2,3-dioxygenase.
    Sun YJ, Huang QQ, Tano T, Itoh S.
    Inorg Chem; 2013 Oct 07; 52(19):10936-48. PubMed ID: 24044415
    [Abstract] [Full Text] [Related]

  • 4. A series of Ni(II)-flavonolate complexes as structural and functional ES (enzyme-substrate) models of the Ni(II)-containing quercetin 2,3-dioxygenase.
    Sun YJ, Huang QQ, Zhang JJ.
    Dalton Trans; 2014 May 07; 43(17):6480-9. PubMed ID: 24622725
    [Abstract] [Full Text] [Related]

  • 5. Catalytic dioxygenation of flavonol by M(II)-complexes (M = Mn, Fe, Co, Ni, Cu and Zn) - mimicking the M(II)-substituted quercetin 2,3-dioxygenase.
    Sun YJ, Huang QQ, Li P, Zhang JJ.
    Dalton Trans; 2015 Aug 21; 44(31):13926-38. PubMed ID: 26153684
    [Abstract] [Full Text] [Related]

  • 6. Series of structural and functional models for the ES (enzyme-substrate) complex of the Co(II)-containing quercetin 2,3-dioxygenase.
    Sun YJ, Huang QQ, Zhang JJ.
    Inorg Chem; 2014 Mar 17; 53(6):2932-42. PubMed ID: 24601533
    [Abstract] [Full Text] [Related]

  • 7. Flavonol dioxygenation catalysed by cobalt(II) complexes supported with 3N(COO) and 4N donor ligands: a comparative study to assess the carboxylate effects on quercetin 2,4-dioxygenase-like reactivity.
    Podder N, Saha A, Barman SK, Mandal S.
    Dalton Trans; 2023 Aug 22; 52(33):11465-11480. PubMed ID: 37466296
    [Abstract] [Full Text] [Related]

  • 8. Mononuclear nickel(ii)-flavonolate complexes of tetradentate tripodal 4N ligands as structural and functional models for quercetin 2,4-dioxygenase: structures, spectra, redox and dioxygenase activity.
    Ajaykamal T, Palaniandavar M.
    RSC Adv; 2023 Aug 11; 13(35):24674-24690. PubMed ID: 37601601
    [Abstract] [Full Text] [Related]

  • 9. The Behavior of Trispyrazolylborato-Metal(II)-Flavonolate Complexes as Functional Models for Bacterial Quercetinase-Assessment of the Metal Impact.
    Hoof S, Limberg C.
    Inorg Chem; 2019 Oct 07; 58(19):12843-12853. PubMed ID: 31502453
    [Abstract] [Full Text] [Related]

  • 10. A functional model for quercetin 2,4-dioxygenase: Geometric and electronic structures and reactivity of a nickel(II) flavonolate complex.
    Jeong D, Sun S, Moon D, Cho J.
    J Inorg Biochem; 2022 Jan 07; 226():111632. PubMed ID: 34700128
    [Abstract] [Full Text] [Related]

  • 11. Set of Fe(II)-3-Hydroxyflavonolate Enzyme-Substrate Model Complexes of Atypically Coordinated Mononuclear Non-Heme Fe(II)-Dependent Quercetin 2,4-Dioxygenase.
    Sun YJ, Huang QQ, Zhang JJ.
    ACS Omega; 2017 Sep 30; 2(9):5850-5860. PubMed ID: 31457842
    [Abstract] [Full Text] [Related]

  • 12. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.
    Hematian S, Garcia-Bosch I, Karlin KD.
    Acc Chem Res; 2015 Aug 18; 48(8):2462-74. PubMed ID: 26244814
    [Abstract] [Full Text] [Related]

  • 13. Synthesis, structure, spectra and reactivity of iron(III) complexes of facially coordinating and sterically hindering 3N ligands as models for catechol dioxygenases.
    Sundaravel K, Dhanalakshmi T, Suresh E, Palaniandavar M.
    Dalton Trans; 2008 Dec 28; (48):7012-25. PubMed ID: 19050788
    [Abstract] [Full Text] [Related]

  • 14. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R, Visvaganesan K, Suresh E, Palaniandavar M.
    Inorg Chem; 2009 Sep 21; 48(18):8771-83. PubMed ID: 19694480
    [Abstract] [Full Text] [Related]

  • 15. Copper-dioxygen adducts and the side-on peroxo dicopper(II)/bis(mu-oxo) dicopper(III) equilibrium: Significant ligand electronic effects.
    Hatcher LQ, Vance MA, Narducci Sarjeant AA, Solomon EI, Karlin KD.
    Inorg Chem; 2006 Apr 03; 45(7):3004-13. PubMed ID: 16562956
    [Abstract] [Full Text] [Related]

  • 16. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations.
    Zhang CX, Kaderli S, Costas M, Kim EI, Neuhold YM, Karlin KD, Zuberbühler AD.
    Inorg Chem; 2003 Mar 24; 42(6):1807-24. PubMed ID: 12639113
    [Abstract] [Full Text] [Related]

  • 17. Copper(I) complexes, copper(I)/O(2) reactivity, and copper(II) complex adducts, with a series of tetradentate tripyridylalkylamine tripodal ligands.
    Schatz M, Becker M, Thaler F, Hampel F, Schindler S, Jacobson RR, Tyeklár Z, Murthy NN, Ghosh P, Chen Q, Zubieta J, Karlin KD.
    Inorg Chem; 2001 May 07; 40(10):2312-22. PubMed ID: 11327908
    [Abstract] [Full Text] [Related]

  • 18. New functional model complexes of intradiol-cleaving catechol dioxygenases: properties and reactivity of CuII(L)(O2Ncat).
    Kaizer J, Zsigmond Z, Ganszky I, Speier G, Giorgi M, Réglier M.
    Inorg Chem; 2007 May 28; 46(11):4660-6. PubMed ID: 17458955
    [Abstract] [Full Text] [Related]

  • 19. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.
    Grubel K, Rudzka K, Arif AM, Klotz KL, Halfen JA, Berreau LM.
    Inorg Chem; 2010 Jan 04; 49(1):82-96. PubMed ID: 19954165
    [Abstract] [Full Text] [Related]

  • 20. The case for an oxidopyrylium intermediate in the mechanism of quercetin dioxygenases.
    Rymbai LD, Klausmeyer KK, Farmer PJ.
    J Inorg Biochem; 2023 Oct 04; 247():112343. PubMed ID: 37549474
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.