These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


135 related items for PubMed ID: 3519371

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Protein profiles of microsections of the fetal and adult human lens during development and ageing.
    Bours J, Wegener A, Hofmann D, Födisch HJ, Hockwin O.
    Mech Ageing Dev; 1990 May 15; 54(1):13-27. PubMed ID: 2195251
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Protein changes in the human lens during development of senile nuclear cataract.
    Kramps HA, Hoenders HJ, Wollensak J.
    Biochim Biophys Acta; 1976 May 20; 434(1):32-43. PubMed ID: 938670
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V, Srivastava OP, Kirk M.
    Mol Vis; 2007 Sep 14; 13():1680-94. PubMed ID: 17893670
    [Abstract] [Full Text] [Related]

  • 7. Water-insoluble high-molecular-weight and alpha-crystallins as the source of the Scheimpflug light scattering pattern in the rat lens.
    Bours J, Ahrend MH, Wegener A, Hockwin O.
    Ophthalmic Res; 1990 Sep 14; 22 Suppl 1():90-4. PubMed ID: 2388761
    [Abstract] [Full Text] [Related]

  • 8. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS, Ng AS, Uchida K, Glomb MA, Nagaraj RH.
    Invest Ophthalmol Vis Sci; 2001 May 14; 42(6):1299-304. PubMed ID: 11328743
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Higher glycation of beta L- and beta S-crystallins in the anterior lens cortex and maximum glycation of gamma-crystallins in the bovine lens nucleus, demonstrated by frozen sectioning, isoelectric focusing and lectin staining.
    Bours J, Ahrend MH, Utikal KJ.
    Ophthalmic Res; 1998 May 14; 30(4):233-43. PubMed ID: 9667054
    [Abstract] [Full Text] [Related]

  • 11. Covalent change in alpha crystallin in opaque and transparent sections from the same human cataractous lens.
    Kodama T, Kodama T, Horwitz J, Takemoto L.
    Jpn J Ophthalmol; 1990 May 14; 34(1):44-52. PubMed ID: 2362373
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Basic biochemical parameters of one hundred cataractous lenses from Egyptian patients.
    Rink H, el-Layeh AA, Bours J, Emarah MH.
    Ophthalmic Res; 1995 May 14; 27 Suppl 1():44-53. PubMed ID: 8577462
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A.
    Jpn J Ophthalmol; 1990 May 14; 34(2):216-24. PubMed ID: 2214364
    [Abstract] [Full Text] [Related]

  • 19. EM immunolocalization of alpha-crystallins: association with the plasma membrane from normal and cataractous human lenses.
    Boyle DL, Takemoto L.
    Curr Eye Res; 1996 May 14; 15(5):577-82. PubMed ID: 8670759
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.