These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


183 related items for PubMed ID: 35241081

  • 1. Network analysis of atherosclerotic genes elucidates druggable targets.
    Banik SK, Baishya S, Das Talukdar A, Choudhury MD.
    BMC Med Genomics; 2022 Mar 03; 15(1):42. PubMed ID: 35241081
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Underlying Genes Involved in Atherosclerotic Macrophages: Insights from Microarray Data Mining.
    Wang W, Zhang K, Zhang H, Li M, Zhao Y, Wang B, Xin W, Yang W, Zhang J, Yue S, Yang X.
    Med Sci Monit; 2019 Dec 25; 25():9949-9962. PubMed ID: 31875420
    [Abstract] [Full Text] [Related]

  • 4. Identification of potential miRNA-mRNA regulatory network contributing to pathogenesis of HBV-related HCC.
    Lou W, Liu J, Ding B, Chen D, Xu L, Ding J, Jiang D, Zhou L, Zheng S, Fan W.
    J Transl Med; 2019 Jan 03; 17(1):7. PubMed ID: 30602391
    [Abstract] [Full Text] [Related]

  • 5. Identification of invasion-metastasis-associated microRNAs in hepatocellular carcinoma based on bioinformatic analysis and experimental validation.
    Lou W, Chen J, Ding B, Chen D, Zheng H, Jiang D, Xu L, Bao C, Cao G, Fan W.
    J Transl Med; 2018 Sep 29; 16(1):266. PubMed ID: 30268144
    [Abstract] [Full Text] [Related]

  • 6. Identification of key microRNAs in the carotid arteries of ApoE-/- mice exposed to disturbed flow.
    Wang X, Gao S, Dai L, Wang Z, Wu H.
    Hereditas; 2019 Sep 29; 156():35. PubMed ID: 31719822
    [Abstract] [Full Text] [Related]

  • 7. Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma.
    Pan Y, Lu L, Chen J, Zhong Y, Dai Z.
    Hereditas; 2018 Sep 29; 155():21. PubMed ID: 29760609
    [Abstract] [Full Text] [Related]

  • 8. Bioinformatics analysis of vascular RNA-seq data revealed hub genes and pathways in a novel Tibetan minipig atherosclerosis model induced by a high fat/cholesterol diet.
    Pan Y, Yu C, Huang J, Rong Y, Chen J, Chen M.
    Lipids Health Dis; 2020 Mar 25; 19(1):54. PubMed ID: 32213192
    [Abstract] [Full Text] [Related]

  • 9. Identification of Differentially Expressed Genes and miRNAs Associated with Esophageal Squamous Cell Carcinoma by Integrated Analysis of Microarray Data.
    Zhang L, Chen J, Cheng T, Yang H, Pan C, Li H.
    Biomed Res Int; 2020 Mar 25; 2020():1980921. PubMed ID: 32714975
    [Abstract] [Full Text] [Related]

  • 10. Identification of key microRNAs and hub genes in non-small-cell lung cancer using integrative bioinformatics and functional analyses.
    Song F, Xuan Z, Yang X, Ye X, Pan Z, Fang Q.
    J Cell Biochem; 2020 Mar 25; 121(3):2690-2703. PubMed ID: 31692035
    [Abstract] [Full Text] [Related]

  • 11. Integrated bioinformatics analysis of core regulatory elements involved in keloid formation.
    Li C, Jin M, Luo Y, Jin Z, Pi L.
    BMC Med Genomics; 2021 Oct 02; 14(1):239. PubMed ID: 34600545
    [Abstract] [Full Text] [Related]

  • 12. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments.
    Zhang T, Guo J, Gu J, Wang Z, Wang G, Li H, Wang J.
    Oncol Rep; 2019 Jan 02; 41(1):279-291. PubMed ID: 30542696
    [Abstract] [Full Text] [Related]

  • 13. Bioinformatics Analysis Identifies MicroRNAs and Target Genes Associated with Prognosis in Patients with Melanoma.
    Li Q, Zhang LY, Wu S, Huang C, Liu J, Wang P, Cao Y.
    Med Sci Monit; 2019 Oct 17; 25():7784-7794. PubMed ID: 31621692
    [Abstract] [Full Text] [Related]

  • 14. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B, Vastrad C, Godavarthi A, Chandrashekar R.
    Med Oncol; 2017 Sep 26; 34(11):182. PubMed ID: 28952134
    [Abstract] [Full Text] [Related]

  • 15. Identification and interaction analysis of key genes and microRNAs in hepatocellular carcinoma by bioinformatics analysis.
    Mou T, Zhu D, Wei X, Li T, Zheng D, Pu J, Guo Z, Wu Z.
    World J Surg Oncol; 2017 Mar 16; 15(1):63. PubMed ID: 28302149
    [Abstract] [Full Text] [Related]

  • 16. Identification of foam cell biomarkers by microarray analysis.
    Song Z, Lv S, Wu H, Qin L, Cao H, Zhang B, Ren S.
    BMC Cardiovasc Disord; 2020 May 06; 20(1):211. PubMed ID: 32375652
    [Abstract] [Full Text] [Related]

  • 17. Microarray data analysis on gene and miRNA expression to identify biomarkers in non-small cell lung cancer.
    Jin X, Guan Y, Zhang Z, Wang H.
    BMC Cancer; 2020 Apr 16; 20(1):329. PubMed ID: 32299382
    [Abstract] [Full Text] [Related]

  • 18. Identification of Potentially Functional CircRNA-miRNA-mRNA Regulatory Network in Gastric Carcinoma using Bioinformatics Analysis.
    Yang G, Zhang Y, Yang J.
    Med Sci Monit; 2019 Nov 20; 25():8777-8796. PubMed ID: 31747387
    [Abstract] [Full Text] [Related]

  • 19. Effects of Icariin on Atherosclerosis and Predicted Function Regulatory Network in ApoE Deficient Mice.
    Zhang Y, Ma X, Li X, Zhang T, Qin M, Ren L.
    Biomed Res Int; 2018 Nov 20; 2018():9424186. PubMed ID: 30533443
    [Abstract] [Full Text] [Related]

  • 20. Identification of Potential Biomarkers and Biological Pathways in Juvenile Dermatomyositis Based on miRNA-mRNA Network.
    Qiu CC, Su QS, Zhu SY, Liu RC.
    Biomed Res Int; 2019 Nov 20; 2019():7814287. PubMed ID: 31886250
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.