These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


96 related items for PubMed ID: 3524115

  • 1. Repeated exercise regulates glucose transport capacity in skeletal muscle.
    Wallberg-Henriksson H.
    Acta Physiol Scand; 1986 May; 127(1):39-43. PubMed ID: 3524115
    [Abstract] [Full Text] [Related]

  • 2. Glucose transport into skeletal muscle. Influence of contractile activity, insulin, catecholamines and diabetes mellitus.
    Wallberg-Henriksson H.
    Acta Physiol Scand Suppl; 1987 May; 564():1-80. PubMed ID: 2890259
    [Abstract] [Full Text] [Related]

  • 3. Activation of glucose transport in diabetic muscle: responses to contraction and insulin.
    Wallberg-Henriksson H, Holloszy JO.
    Am J Physiol; 1985 Sep; 249(3 Pt 1):C233-7. PubMed ID: 3898862
    [Abstract] [Full Text] [Related]

  • 4. Muscle glucose transport: interactions of in vitro contractions, insulin, and exercise.
    Constable SH, Favier RJ, Cartee GD, Young DA, Holloszy JO.
    J Appl Physiol (1985); 1988 Jun; 64(6):2329-32. PubMed ID: 3136124
    [Abstract] [Full Text] [Related]

  • 5. Insulin treatment normalizes decreased glucose transport capacity in streptozotocin-diabetic rat muscle.
    Wallberg-Henriksson H.
    Acta Physiol Scand; 1986 Dec; 128(4):647-9. PubMed ID: 3544679
    [No Abstract] [Full Text] [Related]

  • 6. Glucose transport into rat skeletal muscle: interaction between exercise and insulin.
    Wallberg-Henriksson H, Constable SH, Young DA, Holloszy JO.
    J Appl Physiol (1985); 1988 Aug; 65(2):909-13. PubMed ID: 3049515
    [Abstract] [Full Text] [Related]

  • 7. Reversibility of decreased insulin-stimulated glucose transport capacity in diabetic muscle with in vitro incubation. Insulin is not required.
    Wallberg-Henriksson H, Zetan N, Henriksson J.
    J Biol Chem; 1987 Jun 05; 262(16):7665-71. PubMed ID: 3294836
    [Abstract] [Full Text] [Related]

  • 8. Decreased contraction-stimulated glucose transport in isolated epitrochlearis muscles of pregnant rats.
    Sancho R, Kim J, Cartee GD.
    J Appl Physiol (1985); 2005 Mar 05; 98(3):1021-7. PubMed ID: 15531563
    [Abstract] [Full Text] [Related]

  • 9. Exercise increases susceptibility of muscle glucose transport to activation by various stimuli.
    Cartee GD, Holloszy JO.
    Am J Physiol; 1990 Feb 05; 258(2 Pt 1):E390-3. PubMed ID: 2305881
    [Abstract] [Full Text] [Related]

  • 10. Persistent effects of exercise on skeletal muscle glucose transport across the life-span of rats.
    Cartee GD, Briggs-Tung C, Kietzke EW.
    J Appl Physiol (1985); 1993 Aug 05; 75(2):972-8. PubMed ID: 8226503
    [Abstract] [Full Text] [Related]

  • 11. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle.
    Ploug T, Stallknecht BM, Pedersen O, Kahn BB, Ohkuwa T, Vinten J, Galbo H.
    Am J Physiol; 1990 Dec 05; 259(6 Pt 1):E778-86. PubMed ID: 2175551
    [Abstract] [Full Text] [Related]

  • 12. Prolonged increase in insulin-stimulated glucose transport in muscle after exercise.
    Cartee GD, Young DA, Sleeper MD, Zierath J, Wallberg-Henriksson H, Holloszy JO.
    Am J Physiol; 1989 Apr 05; 256(4 Pt 1):E494-9. PubMed ID: 2650561
    [Abstract] [Full Text] [Related]

  • 13. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle.
    Ren JM, Semenkovich CF, Gulve EA, Gao J, Holloszy JO.
    J Biol Chem; 1994 May 20; 269(20):14396-401. PubMed ID: 8182045
    [Abstract] [Full Text] [Related]

  • 14. Reversal of enhanced muscle glucose transport after exercise: roles of insulin and glucose.
    Gulve EA, Cartee GD, Zierath JR, Corpus VM, Holloszy JO.
    Am J Physiol; 1990 Nov 20; 259(5 Pt 1):E685-91. PubMed ID: 2240207
    [Abstract] [Full Text] [Related]

  • 15. Stimulation of glucose transport in skeletal muscle by hypoxia.
    Cartee GD, Douen AG, Ramlal T, Klip A, Holloszy JO.
    J Appl Physiol (1985); 1991 Apr 20; 70(4):1593-600. PubMed ID: 2055841
    [Abstract] [Full Text] [Related]

  • 16. Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. Evaluation of the regulatory roles of protein kinase C and calcium.
    Henriksen EJ, Rodnick KJ, Holloszy JO.
    J Biol Chem; 1989 Dec 25; 264(36):21536-43. PubMed ID: 2600081
    [Abstract] [Full Text] [Related]

  • 17. Glucose-induced loss of exercise-mediated 3-0-methyl glucose uptake by isolated rat soleus and epitrochlearis muscles.
    Cleland PJ, Rattigan S, Clark MG.
    Horm Metab Res; 1990 Feb 25; 22(2):121-2. PubMed ID: 2323729
    [No Abstract] [Full Text] [Related]

  • 18. Interaction of exercise and insulin in type II diabetes mellitus.
    Wallberg-Henriksson H.
    Diabetes Care; 1992 Nov 25; 15(11):1777-82. PubMed ID: 1468314
    [Abstract] [Full Text] [Related]

  • 19. Decreased insulin-stimulated 3-0-methylglucose transport in in vitro incubated muscle strips from type II diabetic subjects.
    Andréasson K, Galuska D, Thörne A, Sonnenfeld T, Wallberg-Henriksson H.
    Acta Physiol Scand; 1991 Jun 25; 142(2):255-60. PubMed ID: 1877373
    [Abstract] [Full Text] [Related]

  • 20. Increased muscle glucose uptake after exercise. No need for insulin during exercise.
    Richter EA, Ploug T, Galbo H.
    Diabetes; 1985 Oct 25; 34(10):1041-8. PubMed ID: 3899806
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.