These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


103 related items for PubMed ID: 3527043

  • 21. The enzymology of the bacterial phosphoenolpyruvate-dependent sugar transport systems.
    Robillard GT.
    Mol Cell Biochem; 1982 Jul 07; 46(1):3-24. PubMed ID: 7050654
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations.
    Death A, Ferenci T.
    Res Microbiol; 1993 Sep 07; 144(7):529-37. PubMed ID: 8310178
    [Abstract] [Full Text] [Related]

  • 24. [Potassium transport in Escherichia coli B. II. Dependence of the intracellular steady-state potassium concentration upon the extracellular potassium and sodium concentrations in E. coli B 525].
    Pilwat G, Zimmermann U.
    Z Naturforsch B Anorg Chem Org Chem Biochem Biophys Biol; 1972 Jan 07; 27(1):62-7. PubMed ID: 4401900
    [No Abstract] [Full Text] [Related]

  • 25. The phosphoenolpyruvate phosphotransferase system: as important for biofilm formation by Vibrio cholerae as it is for metabolism in Escherichia coli.
    Lazazzera BA.
    J Bacteriol; 2010 Aug 07; 192(16):4083-5. PubMed ID: 20562301
    [No Abstract] [Full Text] [Related]

  • 26. Membrane potentials and the mechanism of intestinal Na(+)-dependent sugar transport.
    Kimmich GA.
    J Membr Biol; 1990 Mar 07; 114(1):1-27. PubMed ID: 2181143
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Kinetic analysis of mechanism of intestinal Na+-dependent sugar transport.
    Restrepo D, Kimmich GA.
    Am J Physiol; 1985 May 07; 248(5 Pt 1):C498-509. PubMed ID: 3993771
    [Abstract] [Full Text] [Related]

  • 29. Regulation of carbohydrate transport in Lactococcus and Lactobacillus.
    Ye J.
    Res Microbiol; 1996 May 07; 147(6-7):523-7. PubMed ID: 9084765
    [No Abstract] [Full Text] [Related]

  • 30. Parallel PTS systems.
    Peterkofsky A, Wang G, Seok YJ.
    Arch Biochem Biophys; 2006 Sep 01; 453(1):101-7. PubMed ID: 17022110
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Sugar transport. VI. Phosphoryl transfer in the lactose phosphotransferase system of Staphylococcus aureus.
    Simoni RD, Hays JB, Nakazawa T, Roseman S.
    J Biol Chem; 1973 Feb 10; 248(3):957-65. PubMed ID: 4684716
    [No Abstract] [Full Text] [Related]

  • 33. Sialic acid, serendipity, and sugar transport: discovery of the bacterial phosphotransferase system.
    Roseman S.
    FEMS Microbiol Rev; 1989 Jun 10; 5(1-2):3-11. PubMed ID: 2699250
    [No Abstract] [Full Text] [Related]

  • 34. Inducer exclusion and the regulation of sugar transport.
    Saier MH, Crasnier M.
    Res Microbiol; 1996 Jun 10; 147(6-7):482-9. PubMed ID: 9084759
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Essentiality of a newly identified carbohydrate-binding module for the function of CelB (BH0603) from the alkaliphilic bacterium Bacillus halodurans.
    Wamalwa BM, Sakka M, Shiundu PM, Ohmiya K, Kimura T, Sakka K.
    Appl Environ Microbiol; 2006 Oct 10; 72(10):6851-3. PubMed ID: 16950908
    [Abstract] [Full Text] [Related]

  • 37. Coordination of carbon and nitrogen metabolism.
    Charbit A.
    Res Microbiol; 1996 Oct 10; 147(6-7):513-8. PubMed ID: 9084763
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.