These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
122 related items for PubMed ID: 35275483
1. Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective. Wang W, Xie Y, Liu L, King GJ, White P, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L. J Agric Food Chem; 2022 Mar 23; 70(11):3375-3390. PubMed ID: 35275483 [Abstract] [Full Text] [Related]
2. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants. Yuan F, Yu X, Dong D, Yang Q, Fu X, Zhu S, Zhu D. BMC Plant Biol; 2017 Jan 18; 17(1):16. PubMed ID: 28100173 [Abstract] [Full Text] [Related]
4. Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa. Zhao J, Jamar DC, Lou P, Wang Y, Wu J, Wang X, Bonnema G, Koornneef M, Vreugdenhil D. Plant Cell Environ; 2008 Jul 18; 31(7):887-900. PubMed ID: 18266904 [Abstract] [Full Text] [Related]
6. Genetic interactions regulating seed phytate and oligosaccharides in soybean (Glycine max L.). Redekar NR, Glover NM, Biyashev RM, Ha BK, Raboy V, Maroof MAS. PLoS One; 2020 Jul 18; 15(6):e0235120. PubMed ID: 32584851 [Abstract] [Full Text] [Related]
7. Identification of genes necessary for wild-type levels of seed phytic acid in Arabidopsis thaliana using a reverse genetics approach. Kim SI, Tai TH. Mol Genet Genomics; 2011 Aug 18; 286(2):119-33. PubMed ID: 21698461 [Abstract] [Full Text] [Related]
8. Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1). Ali N, Paul S, Gayen D, Sarkar SN, Datta K, Datta SK. PLoS One; 2013 Aug 18; 8(7):e68161. PubMed ID: 23844166 [Abstract] [Full Text] [Related]
9. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines. Redekar NR, Biyashev RM, Jensen RV, Helm RF, Grabau EA, Maroof MA. BMC Genomics; 2015 Dec 18; 16():1074. PubMed ID: 26678836 [Abstract] [Full Text] [Related]
10. Integrating a genome-wide association study with transcriptomic data to predict candidate genes and favourable haplotypes influencing Brassica napus seed phytate. Liu H, Li X, Zhang Q, Yuan P, Liu L, King GJ, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L. DNA Res; 2021 Sep 13; 28(5):. PubMed ID: 34514497 [Abstract] [Full Text] [Related]
11. Development and Molecular Characterization of Low Phytate Basmati Rice Through Induced Mutagenesis, Hybridization, Backcross, and Marker Assisted Breeding. Qamar ZU, Hameed A, Ashraf M, Rizwan M, Akhtar M. Front Plant Sci; 2019 Sep 13; 10():1525. PubMed ID: 31850026 [Abstract] [Full Text] [Related]
12. Quantitative proteomic analyses of two soybean low phytic acid mutants to identify the genes associated with seed field emergence. Yu X, Jin H, Fu X, Yang Q, Yuan F. BMC Plant Biol; 2019 Dec 19; 19(1):569. PubMed ID: 31856712 [Abstract] [Full Text] [Related]
16. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M. Adv Genet; 2021 Dec 19; 107():89-120. PubMed ID: 33641749 [Abstract] [Full Text] [Related]
17. Analysis of Lysophospholipid Content in Low Phytate Rice Mutants. Tong C, Chen Y, Tan Y, Liu L, Waters DLE, Rose TJ, Shu Q, Bao J. J Agric Food Chem; 2017 Jul 05; 65(26):5435-5441. PubMed ID: 28603982 [Abstract] [Full Text] [Related]