These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 35276613

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses.
    Collier CJ, Langlois L, Ow Y, Johansson C, Giammusso M, Adams MP, O'Brien KR, Uthicke S.
    New Phytol; 2018 Aug; 219(3):1005-1017. PubMed ID: 29855044
    [Abstract] [Full Text] [Related]

  • 23. Oyster reefs' control of carbonate chemistry-Implications for oyster reef restoration in estuaries subject to coastal ocean acidification.
    Tomasetti SJ, Doall MH, Hallinan BD, Kraemer JR, Gobler CJ.
    Glob Chang Biol; 2023 Dec; 29(23):6572-6590. PubMed ID: 37777480
    [Abstract] [Full Text] [Related]

  • 24. Can prior exposure to stress enhance resilience to ocean warming in two oyster species?
    Pereira RRC, Scanes E, Gibbs M, Byrne M, Ross PM.
    PLoS One; 2020 Dec; 15(4):e0228527. PubMed ID: 32275675
    [Abstract] [Full Text] [Related]

  • 25. Energetic lipid responses of larval oysters to ocean acidification.
    Gibbs MC, Parker LM, Scanes E, Byrne M, O'Connor WA, Ross PM.
    Mar Pollut Bull; 2021 Jul; 168():112441. PubMed ID: 33991985
    [Abstract] [Full Text] [Related]

  • 26. Ocean warming and Marine Heatwaves unequally impact juvenile introduced and native oysters with implications for their coexistence and future distribution.
    Howarth N, Scanes E, Byrne M, Ross PM.
    Sci Rep; 2024 Sep 05; 14(1):20688. PubMed ID: 39237565
    [Abstract] [Full Text] [Related]

  • 27. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO2 and pH.
    Shi D, Hong H, Su X, Liao L, Chang S, Lin W.
    J Phycol; 2019 Jun 05; 55(3):521-533. PubMed ID: 30849184
    [Abstract] [Full Text] [Related]

  • 28. Hidden cost of pH variability in seagrass beds on marine calcifiers under ocean acidification.
    Cossa D, Infantes E, Dupont S.
    Sci Total Environ; 2024 Mar 10; 915():170169. PubMed ID: 38244616
    [Abstract] [Full Text] [Related]

  • 29. Influence of the seagrass Thalassia hemprichii on coral reef mesocosms exposed to ocean acidification and experimentally elevated temperatures.
    Liu PJ, Ang SJ, Mayfield AB, Lin HJ.
    Sci Total Environ; 2020 Jan 15; 700():134464. PubMed ID: 31689648
    [Abstract] [Full Text] [Related]

  • 30. Heatwaves alter survival of the Sydney rock oyster, Saccostrea glomerata.
    Scanes E, Parker LM, O'Connor WA, Dove MC, Ross PM.
    Mar Pollut Bull; 2020 Sep 15; 158():111389. PubMed ID: 32568086
    [Abstract] [Full Text] [Related]

  • 31. Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria.
    Dickinson GH, Matoo OB, Tourek RT, Sokolova IM, Beniash E.
    J Exp Biol; 2013 Jul 15; 216(Pt 14):2607-18. PubMed ID: 23531824
    [Abstract] [Full Text] [Related]

  • 32. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification.
    Pacella SR, Brown CA, Waldbusser GG, Labiosa RG, Hales B.
    Proc Natl Acad Sci U S A; 2018 Apr 10; 115(15):3870-3875. PubMed ID: 29610330
    [Abstract] [Full Text] [Related]

  • 33. The influence of plastic pollution and ocean change on detrital decomposition.
    Litchfield SG, Schulz KG, Kelaher BP.
    Mar Pollut Bull; 2020 Sep 10; 158():111354. PubMed ID: 32753168
    [Abstract] [Full Text] [Related]

  • 34. Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure.
    Wei L, Wang Q, Wu H, Ji C, Zhao J.
    J Proteomics; 2015 Jan 01; 112():83-94. PubMed ID: 25175059
    [Abstract] [Full Text] [Related]

  • 35. Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification.
    Pfister CA, Cardini U, Mirasole A, Montilla LM, Veseli I, Gattuso JP, Teixido N.
    Sci Rep; 2023 Nov 15; 13(1):19996. PubMed ID: 37968499
    [Abstract] [Full Text] [Related]

  • 36. Impacts of Seawater pH Buffering on the Larval Microbiome and Carry-Over Effects on Later-Life Disease Susceptibility in Pacific Oysters.
    Mackenzie CL, Pearce CM, Leduc S, Roth D, Kellogg CTE, Clemente-Carvalho RBG, Green TJ.
    Appl Environ Microbiol; 2022 Nov 22; 88(22):e0165422. PubMed ID: 36342150
    [Abstract] [Full Text] [Related]

  • 37. Seagrass Thalassia hemprichii and associated bacteria co-response to the synergistic stress of ocean warming and ocean acidification.
    Zhang J, Yang Q, Yue W, Yang B, Zhou W, Chen L, Huang X, Zhang W, Dong J, Ling J.
    Environ Res; 2023 Nov 01; 236(Pt 1):116658. PubMed ID: 37454799
    [Abstract] [Full Text] [Related]

  • 38. Ocean acidification refugia in variable environments.
    Kapsenberg L, Cyronak T.
    Glob Chang Biol; 2019 Oct 01; 25(10):3201-3214. PubMed ID: 31199553
    [Abstract] [Full Text] [Related]

  • 39. Ocean warming and acidification affect the nutritional quality of the commercially-harvested turbinid snail Turbo militaris.
    Ab Lah R, Kelaher BP, Bucher D, Benkendorff K.
    Mar Environ Res; 2018 Oct 01; 141():100-108. PubMed ID: 30119918
    [Abstract] [Full Text] [Related]

  • 40. Optimizing marine macrophyte capacity to locally ameliorate ocean acidification under variable light and flow regimes: Insights from an experimental approach.
    Ricart AM, Honisch B, Fachon E, Hunt CW, Salisbury J, Arnold SN, Price NN.
    PLoS One; 2023 Oct 01; 18(10):e0288548. PubMed ID: 37819926
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.