These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Deposition of protein-coated multi-walled carbon nanotubes on oxide surfaces and the retention in a silicon micromodel. Song J, Wang Q, Zeng Y, Liu Y, Jiang W. J Hazard Mater; 2019 Aug 05; 375():107-114. PubMed ID: 31054527 [Abstract] [Full Text] [Related]
3. Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation. Xia T, Ma P, Qi Y, Zhu L, Qi Z, Chen W. Environ Pollut; 2019 Apr 05; 247():383-391. PubMed ID: 30690234 [Abstract] [Full Text] [Related]
4. Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance. Chowdhury I, Duch MC, Mansukhani ND, Hersam MC, Bouchard D. Environ Sci Technol; 2014 Jan 21; 48(2):961-9. PubMed ID: 24345218 [Abstract] [Full Text] [Related]
5. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter. Li C, Hassan A, Palmai M, Xie Y, Snee PT, Powell BA, Murdoch LC, Darnault CJG. Environ Sci Pollut Res Int; 2021 Feb 21; 28(7):8050-8073. PubMed ID: 33051847 [Abstract] [Full Text] [Related]
8. Transport of graphene oxide in saturated quartz sand containing iron oxides. Qi Z, Du T, Ma P, Liu F, Chen W. Sci Total Environ; 2019 Mar 20; 657():1450-1459. PubMed ID: 30677911 [Abstract] [Full Text] [Related]
9. Ionic specificity mediates the transport and retention of graphene-based nanomaterials in saturated porous media. Xia T, Xie Y, Bai S, Guo X, Zhu L, Zhang C. Sci Total Environ; 2023 Jan 01; 854():158724. PubMed ID: 36108856 [Abstract] [Full Text] [Related]
10. Ionic Strength-Dependent Attachment of Pseudomonas aeruginosa PAO1 on Graphene Oxide Surfaces. Jing X, Wu Y, Wang D, Qu C, Liu J, Gao C, Mohamed A, Huang Q, Cai P, Ashry NM. Environ Sci Technol; 2022 Dec 06; 56(23):16707-16715. PubMed ID: 36378621 [Abstract] [Full Text] [Related]
13. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media. Peng S, Wu D, Ge Z, Tong M, Kim H. Environ Pollut; 2017 Jun 06; 225():141-149. PubMed ID: 28365511 [Abstract] [Full Text] [Related]
14. Co-transport of graphene oxide and titanium dioxide nanoparticles in saturated quartz sand: Influences of solution pH and metal ions. Xia T, Lin Y, Guo X, Li S, Cui J, Ping H, Zhang J, Zhong R, Du L, Han C, Zhu L. Environ Pollut; 2019 Aug 06; 251():723-730. PubMed ID: 31112926 [Abstract] [Full Text] [Related]
16. Concurrent agglomeration and straining govern the transport of 14C-labeled few-layer graphene in saturated porous media. Su Y, Gao B, Mao L. Water Res; 2017 May 15; 115():84-93. PubMed ID: 28259817 [Abstract] [Full Text] [Related]
19. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms. Xia T, Fortner JD, Zhu D, Qi Z, Chen W. Environ Sci Technol; 2015 Oct 06; 49(19):11468-75. PubMed ID: 26348539 [Abstract] [Full Text] [Related]
20. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Raychoudhury T, Tufenkji N, Ghoshal S. Water Res; 2014 Mar 01; 50():80-9. PubMed ID: 24361705 [Abstract] [Full Text] [Related] Page: [Next] [New Search]