These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 3528113

  • 1. The pathophysiology of McArdle's disease: clues to regulation in exercise and fatigue.
    Lewis SF, Haller RG.
    J Appl Physiol (1985); 1986 Aug; 61(2):391-401. PubMed ID: 3528113
    [Abstract] [Full Text] [Related]

  • 2. Muscle fatigue in McArdle's disease studied by 31P-NMR: effect of glucose infusion.
    Lewis SF, Haller RG, Cook JD, Nunnally RL.
    J Appl Physiol (1985); 1985 Dec; 59(6):1991-4. PubMed ID: 3865926
    [Abstract] [Full Text] [Related]

  • 3. Myophosphorylase deficiency impairs muscle oxidative metabolism.
    Haller RG, Lewis SF, Cook JD, Blomqvist CG.
    Ann Neurol; 1985 Feb; 17(2):196-9. PubMed ID: 3856415
    [Abstract] [Full Text] [Related]

  • 4. Metabolism of branched-chain amino acids and ammonia during exercise: clues from McArdle's disease.
    Wagenmakers AJ, Coakley JH, Edwards RH.
    Int J Sports Med; 1990 May; 11 Suppl 2():S101-13. PubMed ID: 2193889
    [Abstract] [Full Text] [Related]

  • 5. Metabolic control of cardiac output response to exercise in McArdle's disease.
    Lewis SF, Haller RG, Cook JD, Blomqvist CG.
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Dec; 57(6):1749-53. PubMed ID: 6595253
    [Abstract] [Full Text] [Related]

  • 6. Abnormal ventilation during exercise in McArdle's syndrome: modulation by substrate availability.
    Haller RG, Lewis SF.
    Neurology; 1986 May; 36(5):716-9. PubMed ID: 3458030
    [Abstract] [Full Text] [Related]

  • 7. Impaired glycogen breakdown and synthesis in phosphoglucomutase 1 deficiency.
    Preisler N, Cohen J, Vissing CR, Madsen KL, Heinicke K, Sharp LJ, Phillips L, Romain N, Park SY, Newby M, Wyrick P, Mancias P, Galbo H, Vissing J, Haller RG.
    Mol Genet Metab; 2017 Nov; 122(3):117-121. PubMed ID: 28882528
    [Abstract] [Full Text] [Related]

  • 8. Impaired oxidative metabolism increases adenine nucleotide breakdown in McArdle's disease.
    Sahlin K, Areskog NH, Haller RG, Henriksson KG, Jorfeldt L, Lewis SF.
    J Appl Physiol (1985); 1990 Oct; 69(4):1231-5. PubMed ID: 2262440
    [Abstract] [Full Text] [Related]

  • 9. Decreased insulin action in skeletal muscle from patients with McArdle's disease.
    Nielsen JN, Vissing J, Wojtaszewski JF, Haller RG, Begum N, Richter EA.
    Am J Physiol Endocrinol Metab; 2002 Jun; 282(6):E1267-75. PubMed ID: 12006356
    [Abstract] [Full Text] [Related]

  • 10. The second wind phenomenon in McArdle's disease.
    Braakhekke JP, de Bruin MI, Stegeman DF, Wevers RA, Binkhorst RA, Joosten EM.
    Brain; 1986 Dec; 109 ( Pt 6)():1087-101. PubMed ID: 3466659
    [Abstract] [Full Text] [Related]

  • 11. Impairment of muscle mitochondrial oxidative metabolism in McArdles's disease.
    De Stefano N, Argov Z, Matthews PM, Karpati G, Arnold DL.
    Muscle Nerve; 1996 Jun; 19(6):764-9. PubMed ID: 8609928
    [Abstract] [Full Text] [Related]

  • 12. A multi-parametric protocol to study exercise intolerance in McArdle's disease.
    Ricci G, Bertolucci F, Logerfo A, Simoncini C, Papi R, Franzoni F, Dell'Osso G, Servadio A, Masoni MC, Siciliano G.
    Acta Myol; 2015 Dec; 34(2-3):120-125. PubMed ID: 27199539
    [Abstract] [Full Text] [Related]

  • 13. Neuromuscular diseases as models of cardiovascular regulation during exercise.
    Lewis SF, Haller RG, Blomqvist CG.
    Med Sci Sports Exerc; 1984 Oct; 16(5):466-71. PubMed ID: 6595493
    [Abstract] [Full Text] [Related]

  • 14. Muscle molecular adaptations to endurance exercise training are conditioned by glycogen availability: a proteomics-based analysis in the McArdle mouse model.
    Fiuza-Luces C, Santos-Lozano A, Llavero F, Campo R, Nogales-Gadea G, Díez-Bermejo J, Baladrón C, González-Murillo Á, Arenas J, Martín MA, Andreu AL, Pinós T, Gálvez BG, López JA, Vázquez J, Zugaza JL, Lucia A.
    J Physiol; 2018 Mar 15; 596(6):1035-1061. PubMed ID: 29315579
    [Abstract] [Full Text] [Related]

  • 15. Impairment of the exercise-induced increase in muscle perfusion in McArdle's disease.
    Jehenson P, Leroy-Willig A, de Kerviler E, Merlet P, Duboc D, Syrota A.
    Eur J Nucl Med; 1995 Nov 15; 22(11):1256-60. PubMed ID: 8575473
    [Abstract] [Full Text] [Related]

  • 16. The role of lipid peroxidation in McArdle's disease: applications for treatment of other myopathies.
    Russo PJ, Phillips JW, Seidler NW.
    Med Hypotheses; 1992 Oct 15; 39(2):147-51. PubMed ID: 1461177
    [Abstract] [Full Text] [Related]

  • 17. Impairment of sympathetic activation during static exercise in patients with muscle phosphorylase deficiency (McArdle's disease).
    Pryor SL, Lewis SF, Haller RG, Bertocci LA, Victor RG.
    J Clin Invest; 1990 May 15; 85(5):1444-9. PubMed ID: 2332499
    [Abstract] [Full Text] [Related]

  • 18. Surface EMG, McArdle's disease and exercise intolerance.
    Braakhekke JP, Joosten EM, Stegeman DF.
    Muscle Nerve; 1986 Sep 15; 9(7):669-70. PubMed ID: 3463860
    [No Abstract] [Full Text] [Related]

  • 19. [Glucose metabolism during muscular exercise in McArdle's disease].
    Krzentowski G, Pallikarakis N, Pirnay F.
    Acta Clin Belg; 1979 Sep 15; 34(3):151-7. PubMed ID: 292291
    [No Abstract] [Full Text] [Related]

  • 20. Muscle energy metabolism in McArdle's syndrome by in vivo phosphorus magnetic resonance spectroscopy.
    Argov Z, Bank WJ, Maris J, Chance B.
    Neurology; 1987 Nov 15; 37(11):1720-4. PubMed ID: 3478608
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.