These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 35327995

  • 1. Transcriptome Profiling Reveals Role of MicroRNAs and Their Targeted Genes during Adventitious Root Formation in Dark-Pretreated Micro-Shoot Cuttings of Tetraploid Robinia pseudoacacia L.
    Uddin S, Munir MZ, Gull S, Khan AH, Khan A, Khan D, Khan MA, Wu Y, Sun Y, Li Y.
    Genes (Basel); 2022 Feb 27; 13(3):. PubMed ID: 35327995
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. De novo sequencing and comparative transcriptome analysis of adventitious root development induced by exogenous indole-3-butyric acid in cuttings of tetraploid black locust.
    Quan J, Meng S, Guo E, Zhang S, Zhao Z, Yang X.
    BMC Genomics; 2017 Feb 16; 18(1):179. PubMed ID: 28209181
    [Abstract] [Full Text] [Related]

  • 4. Transcriptomic profiling and discovery of key genes involved in adventitious root formation from green cuttings of highbush blueberry (Vaccinium corymbosum L.).
    An H, Zhang J, Xu F, Jiang S, Zhang X.
    BMC Plant Biol; 2020 Apr 25; 20(1):182. PubMed ID: 32334538
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Role of auxin homeostasis and response in nitrogen limitation and dark stimulation of adventitious root formation in petunia cuttings.
    Yang H, Klopotek Y, Hajirezaei MR, Zerche S, Franken P, Druege U.
    Ann Bot; 2019 Nov 27; 124(6):1053-1066. PubMed ID: 31181150
    [Abstract] [Full Text] [Related]

  • 7. Comparative transcriptome analysis revealed the cooperative regulation of sucrose and IAA on adventitious root formation in lotus (Nelumbo nucifera Gaertn).
    Libao C, Minrong Z, Zhubing H, Huiying L, Shuyan L.
    BMC Genomics; 2020 Sep 23; 21(1):653. PubMed ID: 32967611
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.).
    Stevens ME, Woeste KE, Pijut PM.
    Tree Physiol; 2018 Jun 01; 38(6):877-894. PubMed ID: 29378021
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.).
    Wei K, Wang LY, Wu LY, Zhang CC, Li HL, Tan LQ, Cao HL, Cheng H.
    PLoS One; 2014 Jun 01; 9(9):e107201. PubMed ID: 25216187
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Key regulatory pathways, microRNAs, and target genes participate in adventitious root formation of Acer rubrum L.
    Zhu W, Zhang M, Li J, Zhao H, Zhang K, Ge W.
    Sci Rep; 2022 Jul 14; 12(1):12057. PubMed ID: 35835811
    [Abstract] [Full Text] [Related]

  • 18. Auxin regulates adventitious root formation in tomato cuttings.
    Guan L, Tayengwa R, Cheng ZM, Peer WA, Murphy AS, Zhao M.
    BMC Plant Biol; 2019 Oct 21; 19(1):435. PubMed ID: 31638898
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.