These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 35332155

  • 21. Overexpression of OsMYB4P, an R2R3-type MYB transcriptional activator, increases phosphate acquisition in rice.
    Yang WT, Baek D, Yun DJ, Hwang WH, Park DS, Nam MH, Chung ES, Chung YS, Yi YB, Kim DH.
    Plant Physiol Biochem; 2014 Jul; 80():259-67. PubMed ID: 24813725
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Genome-wide identification and comparative analysis of phosphate starvation-responsive transcription factors in maize and three other gramineous plants.
    Xu Y, Liu F, Han G, Cheng B.
    Plant Cell Rep; 2018 May; 37(5):711-726. PubMed ID: 29396709
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa).
    Wang S, Zhang S, Sun C, Xu Y, Chen Y, Yu C, Qian Q, Jiang DA, Qi Y.
    New Phytol; 2014 Jan; 201(1):91-103. PubMed ID: 24111723
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. OsCYCP1;1, a PHO80 homologous protein, negatively regulates phosphate starvation signaling in the roots of rice (Oryza sativa L.).
    Deng M, Hu B, Xu L, Liu Y, Wang F, Zhao H, Wei X, Wang J, Yi K.
    Plant Mol Biol; 2014 Dec; 86(6):655-69. PubMed ID: 25315105
    [Abstract] [Full Text] [Related]

  • 30. Oxygen deficit alleviates phosphate overaccumulation toxicity in OsPHR2 overexpression plants.
    Li S, Wang C, Zhou L, Shou H.
    J Plant Res; 2014 May; 127(3):433-40. PubMed ID: 24687599
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Orchestrating plant direct and indirect phosphate uptake pathways.
    Wang P, Limpens E, Yao R.
    Trends Plant Sci; 2022 Apr; 27(4):319-321. PubMed ID: 34953721
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters.
    Yue W, Ying Y, Wang C, Zhao Y, Dong C, Whelan J, Shou H.
    Plant J; 2017 Jun; 90(6):1040-1051. PubMed ID: 28229491
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. OsPHR2 modulates phosphate starvation-induced OsMYC2 signalling and resistance to Xanthomonas oryzae pv. oryzae.
    Kong Y, Wang G, Chen X, Li L, Zhang X, Chen S, He Y, Hong G.
    Plant Cell Environ; 2021 Oct; 44(10):3432-3444. PubMed ID: 33938007
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.